ALPINE: A GLOBAL SOLVER FOR MIXED-INTEGER NONLINEAR PROGRAMS (MINLPS)
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PROBLEM STATEMENT
Find the global optimum of the following MINLP:

min  f(x,y)
subjectto: ci(x,y)=0 VieE
cilx,y) <0 Viel
xe€R"; yed{0,1}7”

where, the functions f and ¢; are continuous and dif-
ferentiable. The problem is NP-hard and arises in many
engineering applications. Furthermore, algorithms to
solve the above problem to global optimality have also
been identified to be a bottleneck for a variety of ma-
chine learning problems.

MOTIVATING APPLICATIONS

Power systems Gas pipeline networks

Molecular structure
completion

Chemical process networks

PHILOSOPHY OF ALPINE

The state-of-the-art technique (spatial branch-and-
bound) goes by the philosophy of sub-dividing the
MINLP Into a large number of "easy-to-solve" sub-
problems, exponential number of them, which will in
turn be used to find the globally optimal solution to
the MINLP.

In contrast, Alpine goes by the philosophy of solving
a sequence of small number of increasingly harder
Mixed-Integer Linear Programs (MILP), utilizing state-
of-the-art MILP solvers like CPLEX and Gurobi.

SOLUTION TECHNIQUES USED IN ALPINE

Piecewise convex relaxations

Outer-approximation to solve mixed-integer convex
problems

Dynamic partitioning - new idea in the field of global
optimization

STATE-OF-THE-ART SOLVERS
Open-source: COUENNE, SCIP

Commercial: BARON, LindoAPI, ANTIGONNE
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MILP-BASED ALGORITHM IN ALPINE
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Dynamically partition variable
domains using the local solution
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“outer-approximation”
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Use the active partitions in the
solution of the piecewise relaxation
to generate a better local solution
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If the relative gap between the
piecewise relaxation objective
value and local solution is within &,
terminate; else add more variable
partitions

OUTER-APPROXIMATION

Alpine solves the piecewise convex relaxations via the
technique of outer-approximation. For a function de-
fined in the domain x € X

f(x)

F(x) = F(xX)+ VF(xT(x — x¥) ¥xk e X

SOURCE CODE

The source code for Alpine iIs written using the
Julla programming language and can be found at
https://github.com/lanl-ansi/Alpine.jl
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PIECEWISE CONVEX RELAXATIONS - ILLUSTRATIONS FOR A BILINEAR FUNCTION

Piecewise convex relaxation of a bilinear function z = x1 x5, in the domain [—1, 1]° and with three partitions on the
variable x5, aims to capture the region shown in the 3-D plot (below, to the left)

Piecewise convex envelope for z = x1 x5
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The MILP to characterize the piecewise convex relaxation of the biliner function with three and two partitions on x;
and x», respectively, can constructed using the grid analogy (above, to the right). The mathematical formulation, that
characterizes all the facets of the MILP using an extreme-point representation, Is given by:
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RESULTS

Performance of Alpine I1s comparable to the state-of-
the-art commercial solver, BARON, and better than the
state-of-the-art open-source solvers. In the figure be-
low, higher the curve, better the performance.
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Venn-diagram of instances solved to optimality
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DYNAMIC VARIABLE PARTITIONING

The variable partitioning in Alpine is done dynamically,
In a non-uniform fashion, guided by the local and the
lower bounding solutions
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