Center for Nonlinear Studies

PROBLEM STATEMENT

Find the global optimum of the following MINLP:

min f(x, y)subject to: $c_i(x, y) = 0 \quad \forall i \in E$ $c_i(x, y) \leq 0 \quad \forall i \in I$ $x \in \mathbb{R}^{n}; y \in \{0, 1\}^{m}$

where, the functions f and c_i are continuous and differentiable. The problem is NP-hard and arises in many engineering applications. Furthermore, algorithms to solve the above problem to global optimality have also been identified to be a bottleneck for a variety of *ma*chine learning problems.

MOTIVATING APPLICATIONS

Power systems

Chemical process networks

Gas pipeline networks

Molecular structure completion

PHILOSOPHY OF ALPINE

The state-of-the-art technique (spatial branch-andbound) goes by the philosophy of sub-dividing the MINLP into a large number of "easy-to-solve" subproblems, exponential number of them, which will in turn be used to find the globally optimal solution to the MINLP.

In contrast, Alpine goes by the philosophy of solving a sequence of small number of increasingly harder Mixed-Integer Linear Programs (MILP), utilizing stateof-the-art MILP solvers like CPLEX and Gurobi.

SOLUTION TECHNIQUES USED IN ALPINE

Piecewise convex relaxations

Outer-approximation to solve mixed-integer convex problems

Dynamic partitioning - new idea in the field of global optimization

STATE-OF-THE-ART SOLVERS

Open-source: COUENNE, SCIP

Commercial: BARON, LindoAPI, ANTIGONNE

ALPINE: A GLOBAL SOLVER FOR MIXED-INTEGER NONLINEAR PROGRAMS (MINLPS)

Kaarthik Sundar (A-1), Harsha Nagarajan (T-5), Russell Bent (T-5), Hassan Hijazi (T-5); CNLS visiting students: Mowen Lu (Clemson), Site Wang (Clemson)

> Funding: LDRD 20170201ER (CMD), CNLS LA-UR-18-23774

https://github.com/lanl-ansi/Alpine.jl

BARO

POD

The variable partitioning in Alpine is done dynamically, in a non-uniform fashion, guided by the local and the

$-2.5 \leq X \leq 2.5$					
-2	-1	0	1	2	3
1	x^* Active partition				
2	—1	0	1	2	3
<i>x*</i> Active partition					
2	-1	0	1	2	3

Constraint Programming, 2016.