
Journal of Global Optimization
https://doi.org/10.1007/s10898-018-00734-1

An adaptive, multivariate partitioning algorithm for global
optimization of nonconvex programs

Harsha Nagarajan1 ·Mowen Lu2 · Site Wang2 · Russell Bent1 · Kaarthik Sundar1

Received: 8 July 2017 / Accepted: 26 December 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In this work, we develop an adaptive, multivariate partitioning algorithm for solving non-
convex, Mixed-Integer Nonlinear Programs (MINLPs) with polynomial functions to global
optimality. In particular, we present an iterative algorithm that exploits piecewise, convex
relaxation approaches via disjunctive formulations to solve MINLPs that is different than
conventional spatial branch-and-bound approaches. The algorithm partitions the domains of
variables in an adaptive and non-uniform manner at every iteration to focus on productive
areas of the search space. Furthermore, domain reduction techniques based on sequential,
optimization-based bound-tightening and piecewise relaxation techniques, as a part of a
presolve step, are integrated into the main algorithm. Finally, we demonstrate the effective-
ness of the algorithm on well-known benchmark problems (including Pooling and Blending
instances) fromMINLPLib and compare our algorithmwith state-of-the-art global optimiza-
tion solvers. With our novel approach, we solve several large-scale instances, some of which
are not solvable by state-of-the-art solvers. We also succeed in reducing the best known
optimality gap for a hard, generalized pooling problem instance.

Keywords Global optimization · Adaptive partitioning · MILP-based methods ·
Mixed-integer nonlinear programs · McCormick · Piecewise relaxations · Sequential
optimization-based bound-tightening

B Harsha Nagarajan
harsha@lanl.gov

Mowen Lu
mlu87@g.clemson.edu

Site Wang
sitew@g.clemson.edu

Russell Bent
rbent@lanl.gov

Kaarthik Sundar
kaarthik@lanl.gov

1 Center for Nonlinear Studies, Los Alamos National Laboratory, New Mexico, USA

2 Department of Industrial Engineering, Clemson University, Clemson, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-018-00734-1&domain=pdf
http://orcid.org/0000-0003-4550-1100


Journal of Global Optimization

1 Introduction

Mixed-Integer Nonlinear Programs (MINLPs) are convex/non-convex, mathematical pro-
grams that include discrete variables and nonlinear terms in the objective function and/or
constraints. In practice, non-convex MINLPs arise in many applications such as chemical
engineering (synthesis of process and water networks) [33,45], energy infrastructure net-
works [20,30,41], and in molecular distance geometry problems [28], to name a few. Given
the importance of these problems, considerable research has been devoted to developing
approaches for solvingMINLPs, such as approaches implemented in such solvers as BARON
[47], Couenne [5] andSCIP [1].Within these approaches, two of the key features of successful
methods includeMINLP relaxations and search. For example, in a typical solver, non-convex
terms are replaced with convex over- and under-estimators [8]. The resulting convex opti-
mization problem is a relaxation of the original MINLP and its solution is a bound to the
optimal objective value of the MINLP. These relaxations are then used in conjunction with a
search procedure, like spatial branch-and-bound (sBB), to explore the solution space of the
MINLP and identify the global optimal solution.

Despite major developments related to these features and others, MINLPs still remain
difficult to solve and global optimization solvers often struggle to find optimal solutions and
at times, even a feasible solution. In many cases, the source of these struggles are weak
relaxations of the MINLP and the impact weak relaxations on the size of the search space
that is explored. To address these difficulties, in this paper we develop an approach for
deriving better bounds through piecewise convex relaxations that are modeled as mixed-
integer convex optimization problems. The piecewise convex relaxations are combined with
additional algorithmic enhancements, a novel, adaptive domain partitioning scheme, and
successive solves ofmixed-integer problems (MIP), to produce a novel search procedure. This
global optimization algorithm is tested extensively on MINLPs with polynomial constraints,
including the well-known and hard Pooling and Blending instances [26] and is compared
with state-of-the-art global optimization approaches. In this paper, we focus onMINLPs with
polynomial constraints, but the approach is fairly generic and can be generalized to other
nonconvex functions. Finally, for ease of exposition,we assume theMINLPs areminimization
problems throughout the rest of the paper.

We next discuss the key contributions we make in this paper. Our first contribution
improves convex relaxations of polynomial functions. Here, we develop an approach based
on piecewise convex relaxations. While such relaxations have been used to bound medium-
sized MINLPs with bilinear functions [7,12,19,24,26], we generalize these approaches to
arbitrary polynomial functions.

Our second contribution turns the derivation of these relaxations into a search procedure
based on solving MIPs, i.e., a ‘MIP-based approach’ that is akin to the approach of [17,44].
Most existing approaches rely on sBB. In a conventional sBB algorithm, branching occurs
on the domain of one variable at a time. The branching generates two new problems (child
nodes), each with a smaller domain than the parent problem (node) and potentially tighter
relaxations. Whenever the best possible solution at a node is worse than the best known
feasible solution, the node is pruned. sBB is typically combined with with enhancements
such as cutting planes and domain reduction techniques to further improve the efficiency of
the search [47,49]. In contrast, our MIP-based approach solves a sequence of MIPs based on
successively tighter piecewise convex relaxations that converges to the optimal solution.

Our third contribution is a sparse domain partitioning approach for piecewise convex
relaxations. Most existing partitioning approaches rely on uniform partitioning, i.e., [19].

123



Journal of Global Optimization

Unfortunately, uniform partitioning, when used in conjunction with a MIP-based approach
can lead to MIPs with a large number of binary variables. Thus, uniform partitioning lim-
its MIP based approaches to small- and medium-sized problems. This important issue has
motivated the development of piecewise relaxation techniques where the number of binary
variables increases logarithmically [36,52] with the number of partitions and multiparamet-
ric disaggregation approaches [11]. In other work [53], the authors present a non-uniform,
bivariate partitioning approach that improves the relaxations but provide results for a single,
simple benchmark problem. Reference [50] discusses a univariate parametrization method
applied to medium-sized benchmarks. However, none of these approaches address the key
limitation of uniform partitioning, partition density, i.e. these methods introduce partitions
in unproductive areas of the variable domains. We address this limitation by introducing a
novel approach that adaptively partitions the relaxations in regions of the search space that
favor optimality. To the best of our knowledge, this is the first work in the literature that
develops a complete MIP-based method for solving MINLPs to global optimality based on
sparse domain partitioning schemes.

Our fourth (minor) contribution combines the adaptively partitioned piecewise relaxation
approach with sequential, optimization-based bound-tightening (OBBT). OBBT is used as a
presolve step in the overall global optimization algorithm.OBBT solves a sequence of convex
minimization and maximization problems on the variables that appear in nonconvex terms.
The solutions to these problems tighten domains of the variables and the associated relaxation
to the nonconvex terms [4,16,37,42]. Recent work has observed the effectiveness of applying
OBBT in various applications [13,39,54]. We adapt and extend this approach by solving
convex MIPs in the OBBT procedure (existing approaches solve ordinary convex problems).
Though this approach seems counter-intuitive, computational experiments indicate that the
value of the strengthened bounds obtained by solvingMIPs often outweigh the computational
time required to solve them.

Finally, these four contributions are combined into aMIP-based global optimization algo-
rithm which is referred to as the Adaptive, Multivariate Partitioning (AMP) algorithm. Given
an MINLP, AMP first calculates a local solution to the MINLP, an initial lower bound, and
tightened variable bounds (sequential OBBT) as a presolve step. The main loop of the AMP
algorithm refines the partitions of the variable domain, computes improved lower bounds,
and derives better local (upper bound) solutions. The variable domains are refined in a non-
uniform and adaptive fashion. In particular, partitions are dynamically added around the
optimal solution to the relaxed problem at each iteration of AMP. This loop iterates until the
relative gap between the lower bound and the upper bound solution meets a user specified
global optimality tolerance. The computation may also be interrupted early to provide a local
optimal solution.

A preliminary version of this work [38] was applied to hard, infrastructure network opti-
mization problems [29,54], which demonstrated the effectiveness of adaptive partitioning
strategies. Given the efficacy of the proposed ideas, including various enhancements (not
discussed in this paper), the algorithm’s implementation is also available as an open-source
solver in Julia programming language [6]. The remainder of this paper is organized as
follows: Sect. 2 discusses the required notation, problem set-up, and reviews standard con-
vex relaxations. Section 3 discusses our Adaptive, Multivariate Partitioning Algorithm to
solve MINLPs to global optimality with a few proofs of convergence guarantees. Section 4
illustrates the strength of the algorithms on benchmark MINLPs and Sect. 5 concludes the
paper.

123



Journal of Global Optimization

2 Definitions

Notation Here, we use lower and upper case for vector and matrix entries, respectively. Bold
font refers to the entire vector or matrix. With this notation, ||v||∞ defines the �∞ norm
of vector v ∈ R

n . Given vectors v1 ∈ R
n and v2 ∈ R

n , v1 · v2 = ∑n
i=1 v1iv2i ; v1 + v2

implies element-wise sums; and v1
α
denotes the element-wise ratio between entries of v1 and

the scalar α. Next, z ∈ Z represents an integer (variable/constant) and specifically z ∈ B

represents a binary variable. Finally, we let ei denote a unit vector whose i th coordinate is
one.

Problem The problems considered in this paper are MINLPs with polynomials which have
at least one feasible solution. The general form of the problem, denoted as P , is as follows:

P : minimize
x, y

f (x, y)

subject to g(x, y) � 0,

h(x, y) = 0,

xL � x � xU ,

y ∈ {0, 1}m
where, f : Rn × B

m → R, gi : Rn × B
m → R for i = 1, . . . ,G and hi : Rn × B

m →
R for i = 1, . . . , H are polynomials. For the sake of clarity, neglecting the binary variables
in the functions, f , g or h can assume the following form:

∑

t∈T
at

∏

k∈Kt

xαk
k (1)

where, T is a set of terms in a polynomial, Kt is a set of variables in term t , at ∈ R is a real
coefficient and αk is an exponent (integer) value. x and y are vectors of continuous variables
with box constraints [xL , xU ] and binary variables, respectively. x and y have dimension n
and m, respectively. We use notation σ to denote a solution to P , where σ(·) is the value
of variable(s), ·, in σ and f (σ ) is the objective value of σ . We note that P is an NP-hard
combinatorial problem. The construction of convex relaxations for each individual term in
Eq. (1) plays a critical role in developing algorithms for solving P to global optimality. In
the following paragraphs, we discuss the relaxations used in this paper.

In this paper, we use relaxations for bilinear, multilinear and quadratic monomials. Note
that, without loss of generality, any polynomial can be equivalently expressed using a com-
bination of these monomials.

McCormick relaxation of a bilinear term For t ∈ T , when |Kt | � 2 and αk = 1, the
McCormick relaxation [32] is used. Given variables xi and x j that appear in t , McCormick
relaxed the set

SB =
{
(xi , x j , x̂i j ) ∈ [x Li , xUi ] × [x Lj , xUj ] × R | x̂i j = xi x j

}

with the following four inequalities:

x̂i j � x Li x j + x Lj xi − x Li x
L
j (2a)

x̂i j � xUi x j + xUj xi − xUi xUj (2b)

x̂i j � x Li x j + xUj xi − x Li x
U
j (2c)

x̂i j � xUi x j + x Lj xi − xUi x Lj (2d)

123



Journal of Global Optimization

Let 〈xi , x j 〉MC ⊃ SB represent the feasible region defined by (2). For a single bilinear term
xi x j , the relaxations in (2) describe the convex hull of set SB [2].

RecursiveMcCormick relaxation of a multilinear term For a general multilinear term (|Kt | �
3, αk = 1), McCormick proposed a recursive approach to successively derive envelopes
on bilinear combinations of the terms. The resulting relaxation has formed the basis for
the relaxations used in the global optimization literature, including the implementations in
BARON, Couenne and SCIP [1,5,47]. More formally, the non-convex function given by
∏|Kt |

k=1 xk can be relaxed by introducing lifted variables x̂1, . . . , x̂|Kt |−1 such that x̂1 = x1x2
and x̂i = x̂i−1xi+1 for every i = 2, . . . , |Kt | − 1. Thus, the recursive McCormick envelopes
of

∏|Kt |
k=1 xk are described by

{
(x1, x2, x̂1) ∈ [x L1 , xU1 ] × [x L2 , xU2 ] × [̂x L1 , x̂U1 ] | x̂1 = 〈x1, x2〉MC

}
, (3a)

{
(̂xi−1, xi+1, x̂i ) ∈ [̂x Li−1, x̂

U
i−1] × [x Li+1, x

U
i+1] × [̂x Li , x̂Ui ] |

x̂i = 〈̂xi−1, xi+1〉MC
}

, ∀i = 2, . . . , |Kt | − 1. (3b)

where, the bounds of x̂i variables are derived appropriately. By abuse of notation, (3) can be
succinctly represented as

〈|Kt |∏

k=1

xk

〉MC

=
〈〈

〈x1, x2〉MC , . . . , x|Kt |−1

〉MC
, x|Kt |

〉MC

.

In general, the recursive McCormick envelopes described in (3) for a single multilinear
term are not the tightest possible relaxation. The choice of the recursion order affects the
tightness of the relaxation [10,48]. However, authors in [46] prove that (3) describes the
convex hull when the bounds on the variables are in the set [0, 1]. This result was generalized
by [31] for variables with bounds that are either [0, xUi ] or [−xUi , xUi ] (symmetric about the
origin). More generally, the convex hull of a multilinear term can be obtained by using an
extreme point characterization by using exponential number of variables [43]. The compu-
tational tractability of using an extreme point characterization for piecewise relaxation of
multilinear terms remains a subject of future work.

Piecewise McCormick relaxation of a bilinear term In the presence of partitions on the
variables involved in a multilinear term, the McCormick relaxations (applied on bilinear
terms) can be tightened (see Fig. 1a) by using a piecewise convex relaxation which uses one
binary variable per variable partition. Given a bilinear term xi x j and partition sets I i and I j ,
binary variables ŷi ∈ {0, 1}|Ii | and ŷ j ∈ {0, 1}|I j | are used to denote these partitions. Each
entry blue in I i is a pair of values, 〈i, j〉 that model the upper and lower bound of a variable
in a partition. We refer to the collection of all partition sets with I . These binary variables
are used to control the partitions that are active and the associated relaxation of the active
partition. Formally, the piecewise McCormick constraints, denoted by x̂i j ∈ 〈xi , x j 〉MC(I),
take the following form:

x̂i j �
(
xli · ŷi

)
x j +

(
xlj · ŷ j

)
xi −

(
xli · ŷi

) (
xlj · ŷ j

)
(4a)

x̂i j �
(
xui · ŷi

)
x j +

(
xuj · ŷ j

)
xi − (

xui · ŷi
) (

xuj · ŷ j
)

(4b)

x̂i j �
(
xli · ŷi

)
x j +

(
xuj · ŷ j

)
xi −

(
xli · ŷi

) (
xuj · ŷ j

)
(4c)

123



Journal of Global Optimization

(a) Bilinear term (xixj)

xi

xi

xL
i xl

i

xi = x2
i

Piecewise
envelop

Outer
approximation

yi1
yi2

yi3

xu
i xU

i

(b) Quadratic term (x2
i )

Fig. 1 Piecewise relaxations (shaded) of bilinear and quadratic terms for a given set of partitions

x̂i j �
(
xui · ŷi

)
x j +

(
xlj · ŷ j

)
xi − (

xui · ŷi
) (

xlj · ŷ j
)

(4d)

ŷi · 1 = 1, ŷ j · 1 = 1 (4e)

ŷi ∈ {0, 1}|Ii |, ŷ j ∈ {0, 1}|I j | (4f)

where, (xli , x
u
i ) ∈ I i are the vector form of the partition sets of xi (I i ) and 1 is a vector of

ones of appropriate dimension. Also, (xli · ŷi )(xlj · ŷ j ) is rewritten as xli (̂ yi ŷ
T
j )x

l
j , where

(̂ yi ŷ
T
j ) is amatrixwith binary product entries. Note that these binary products and the bilinear

terms in ŷ j xi and ŷi x j can be linearized exactly using standardMcCormick relaxations [40].
It is then straightforward to generalize piecewise McCormick relaxations to multilinear

terms, and we use the following notation to denote these relaxations

〈|Kt |∏

k=1

xk

〉MC(I)

=
〈〈

〈x1, x2〉MC(I) , . . . , x|Kt |−1

〉MC(I)

, x|Kt |
〉MC(I)

.

We also note that the McCormick relaxation is a special case of the piecewise McCormick
relaxation when I i = {〈x Li , xUi 〉}.

These relaxations can also be encoded using log(|I i |) binary variables [15,27,52] or
variations of special order sets (SOS1, SOS2). For an ease of exposition, we do not present
the details of the log-based formulation in this paper. However, later in the results section, we
do compare the effectiveness of SOS1 formulations with respect to the linear representation
of binary variables.

Piecewise relaxation of a quadratic term Without loss of generality,1 assume a univariate
monomial takes the form x2i . Though, we restrict our discussion to a univariate monomial,
similar extensions hold true for amultivariatemonomial by applying a sequence of relaxations

1 In the case of a higher order univariate monomial, i.e., x5i , apply a reduction of the form x2i x
2
i xi ⇒ x̃2i xi ⇒

˜̃xi xi .

123



Journal of Global Optimization

on the respective univariate monomials. Given partitions in I i , the piecewise, convex relax-
ation (see Fig. 1b), denoted by x̂i ∈ 〈xi 〉MCq (I), takes the form:

x̂i � x2i , (5a)

x̂i �
(
(xli · ŷi ) + (xui · ŷi )

)
xi − (xli · ŷi )(xui · ŷi ) (5b)

ŷi · 1 = 1 (5c)

ŷi ∈ {0, 1}|Ii | (5d)

Once again, (xli · ŷi )(xui · ŷi ) is rewritten as xli (̂ yi ŷTi )xui , where ŷi ŷ
T
i is a symmetric matrix

with binary product entries (squared binaries on diagonal). Hence, it is sufficient to linearize
the entries of the upper triangular matrix with exact representations. We also note again that
the unpartitioned relaxation is a special case where I i = {〈x Li , xUi 〉}.

Lemma 1 〈xi 〉MCq (I) ⊂ 〈xi , xi 〉MC(I).

Proof Given I i for variable xi , 〈xi , xi 〉MC(I) is given by the following constraints:

x̂i � 2(xli · ŷi )xi − (xli · ŷi )2 (6a)

x̂i � 2(xui · ŷi )xi − (xui · ŷi )2 (6b)

x̂i �
(
(xli · ŷi ) + (xui · ŷi )

)
xi − (xli · ŷi )(xui · ŷi ) (6c)

ŷi · 1 = 1, ŷi ∈ {0, 1}|Ii | (6d)

First, we claim that any point in 〈xi 〉MCq (I) also lies in 〈xi , xi 〉MC(I). This is trivial to observe
since Eqs. (6a) and (6b) are outer approximations of Eq. (5a) at the partition points. To prove
〈xi 〉MCq (I) is a strict subset of 〈xi , xi 〉MC(I), we need to produce a point in 〈xi , xi 〉MC(I)

that is not satisfied by 〈xi 〉MCq (I).
Consider the family of points

xi = 1

2

(
xli · e j + xui · e j

)
, x̂i =

(
xli · e j

) (
xui · e j

) ∀ j ∈ 1, . . . , |I|

where, e j is a unit vector whose j th component takes a value 1. This family of points is
satisfied by 〈xi , xi 〉MC(I) and are not contained in 〈xi 〉MCq (I), completing the proof. ��

Given these definitions, we usePI to denote the piecewise relaxation ofP for a given I ,
where all the nonlinear monomial terms are replaced with their respective piecewise convex
relaxations. More formally,

PI : minimize
x, y

f I(x, y)

subject to gI(x, y) � 0,

hI(x, y) � 0,

xli · ŷi � xi � xui · ŷi , ∀ i = 1 . . . n

y, ŷ ∈ {0, 1}

(7)

where, f I , gI and hI inherit the above defined piecewise relaxations should the functions
be nonlinear. Also, we let f I(σ ) denote the objective value of a feasible solution, σ , toPI .

123



Journal of Global Optimization

3 Adaptivemultivariate partitioning algorithm

This section details the Adaptive Multivariate Partitioning (AMP) algorithm to compute
global2 optimal solutions to MINLPs.

The effectiveness of AMP stems from the observation that the local optimal solutions
found by the local solvers are often global optimum or are very close to the global optimum
solution on standard benchmark instances. This observation was also made in the literature
for the optimal power flow problem in power grids [20,25,29]. AMP exploits this structure
and adds sparse, spatial partitions to the variable domains around the local optimal solution.
It is important to note that though the partitions are dynamically added around the local
optimal point (in the initial iterations), the AMP algorithm does not discount the fact that the
global optimal solution can potentially lie in sparser regions and will eventually partition the
domains which contain the global optimum.

A flow-chart informally describing the steps of AMP and a formal pseudo-code for AMP
are given in Fig. 2 andAlgorithm 1, respectively. AMP consists of twomain components. The
first component is a presolve (see lines 1 – 4). The presolve component of the algorithm is
sub-divided into four parts: (i) computing an initial feasible solution, σ , (line 1), (ii) creating
an initial set of partitions, I , (iii) sequential OBBT (line 3), and (iv) computing an initial
lower bound, σ , using the relaxations detailed in Sect. 2 (line 4).

The second component of AMP is themain loop (lines 5–10) that updates the upper bound,
σ , and the lower bound, σ , of P , until either of the following conditions are satisfied: the
bounds are within ε or the computation time exceeds the limit. At each iteration of the main
loop, the partitions are refined and the corresponding piecewise convex relaxation is solved
to obtain a lower bound (lines 6 and 7). Similarly the upper bound is obtained using a local
solver and updated if it improves the best upper bound computed thus far (lines 8 and 9). In
the following sections, we discuss each step of the algorithm in detail.

Algorithm 1 Global optimization using AMP algorithm
Input: P
1: σ ← Solve(P) � Compute local optimal solution
2: I ← InitializePartitions(P, σ ) � Initialize variable partitions
3: xl , xu ← TightenBounds(PI , σ ) � Sequential OBBT
4: σ ← Solve(PI ) � Initial lower bound computation

5: while
(

f (σ )− fI (σ )

fI (σ )
> ε

)

and (Time < TimeOut) do

6: I ← RefinePartitions(PI , σ ) � Adaptive partition refinement
7: σ ← Solve(PI ) � Compute new lower bound
8: σ̂ ← Solve(P, σ ) � Compute new local optimum
9: σ ← argminσ∈σ∪σ̂ f (σ ) � Update upper bound
10: end while
Output: σ , σ

3.1 Presolve

The first step of the presolver of AMP is to compute a local optimal solution, σ , to the
MINLP (line 1 of Algorithm 1) . This is done using off-the-shelf, open-source solvers that

2 Global optimum is defined numerically by a tolerance, ε.

123



Journal of Global Optimization

Fig. 2 Flow-chart describing the overall structure of AMP. The flow chart assumes that theMINLP is a feasible
minimization problem

use primal-dual interior point methods in conjunction with a branch-and-bound search tree
to handle integer variables. This local solution, σ , is further used to initialize the partitions,
I (line 2). When the local solver reports infeasibility, we set the initial value of f (σ ) = ∞
(line 5) and use the solution obtained by solving the unpartitioned convex relaxation ofP to

123



Journal of Global Optimization

initialize I . In the subsequent sections we detail the partition initialization schemes and the
sequential OBBT algorithm in lines 2 and 3 of Algorithm 1.

3.1.1 Partition initialization scheme and sequential OBBT

This section details the algorithm used in lines 2 and 3 ofAMP’s presolve i.e. InitializePar-
titions(P, σ ) and TightenBounds(PI , σ ), respectively. The sequential OBBT procedure
implemented in these functions is one of the key features of AMP. In many engineering
applications there is little or no information about the lower and upper bounds (xL , xU ) of
the decision variables in the problem. Even when known, the gap between the bounds is
often large and weaken relaxations. In practice, replacing the original bounds with tighter
bounds can (sometimes) dramatically improve the quality of these relaxations. The basic idea
of OBBT is the derivation of (new) valid bounds to improve the relaxations. Though, OBBT
is a well-known procedure used in global optimization, the key difference is that we apply
OBBT sequentially by using mixed-integer models to tighten the bounds.

Algorithm 2 Partition Initialization Scheme
1: function InitializePartitions(P, σ )
2: for i ∈ 1 . . . n do
3: I i ← {〈xLi , xUi 〉}
4: end for
5: if Bound-tightening without partitions then
6: return I
7: else � Bound-tightening with partitions
8: return RefinePartitions(PI , σ )
9: end if
10: end function

For the sequential OBBT algorithm we present two procedures. First, OBBT without
partitions (BT), which is equivalent to partitioning with a single partition. Second, partition-
based OBBT (PBT) which uses the standard partitioning approach described in Sect. 3.2.1.
For simplicity, we drop the term ‘optimization-based (OB)’ in the acronym. The BT uses
convex optimization problems to tighten the bounds, while the PBT uses convex MIPs to
tighten the bounds. The two procedures differ in the initial set of partitions, I , used in the
bound-tightening process. Hence, we first present two partition initialization schemes, one
for the BT and another for the PBT, respectively. For bound-tightening without partitions, as
the name suggests, the partition initialization scheme does not partition the variable domains
i.e., I i ← {〈x Li , xUi 〉} for every i = 1, . . . , n (line 6 of Algorithm 2). In the case of PBT, the
partition initialization scheme initializes three partitions around the local optimal solution,
σ with a user parameter � > 1 (line 8 of Algorithm 2 and Sect. 3.2.1). An illustration of
the partitions added to a variable x ∈ [x L , xU ], whose value at the local optimal solution
is σ(x), is shown in the Figure 3. If no local solution is obtained in line 1 of Algorithm 1,
the solution obtained by solving the unpartitioned convex relaxation ofP is used in place of
σ(x).3

Once the initial set of partitions is computed, the sequential OBBT procedure iteratively
computes new bounds by solving a modified version of PI (Algorithm 3). Each iteration
of the sequential OBBT algorithm proceeds as follows: for each continuous variable xi in

3 To keep the algorithm notation simple, this detail is omitted from Algorithm 2.

123



Journal of Global Optimization

Fig. 3 Partition initialization
scheme for PBT

σ(x)xL xU

xL x xL

σ(x) + xU−xL

Δσ(x)− xU−xL

Δ

P appearing in the nonconvex terms, two problems PI
l and PI

u are solved, where xi is
minimized and maximized, respectively, i.e.,

PI
l ,PI

u : minimize
x, y,̂ y

xi (8a)

subject to f I(x, y) ≤ f (σ ) (8b)

gI(x, y) ≤ 0, (8c)

hI(x, y) = 0, (8d)

xli · ŷi ≤ xi ≤ xui · ŷi , ∀ i = 1 . . . n (8e)

y, ŷ ∈ {0, 1} (8f)

where xi in formulation (8) denotes two optimization problems, where xi and−xi are indi-
vidually minimized (lines 6–7 of Algorithm 3). In both cases, a constraint that bounds the
original objective function of PI with a best known feasible solution σ [Eq. (8b)] is added
when an initial feasible solution is available. Inclusion of this constraint on the objective is
referred to as optimality/optimization-based bound-tightening in the literature. The OBBT
algorithm stops when cumulative bound improvement between successive iterations, mea-
sured in terms of the �∞ norm, falls below specified tolerance values (line 3 of Algorithm 3).
We note that the sequential OBBT algorithm is naturally parallelizable as all the optimization
problems are independently solvable.

Algorithm 3 Sequential bound-tightening of x

1: function TightenBounds(PI , σ )
2: x̂l = x̂u ← 0
3: while ||xl − x̂l ||∞ > εl and ||xu − x̂u ||∞ > εu do
4: x̂l ← xl , x̂u ← xu

5: for i = 1, . . . , n do
6: σ l

i ← Solve(PI
l )

7: σ u
i ← Solve(PI

u )

8: xi
l ← max(σ l

i (xi ), xi
l ), xi

u ← min(σ u
i (xi ), xi

u)

9: end for
10: end while
11: return xl , xu .
12: end function

Remark 1 OBBT procedures, usually referred to as domain reduction techniques, are
well known in the global optimization literature [22,42]. Our algorithm generalizes these
techniques by performing optimality-based bound-tightening iteratively based on MIP-
formulations (with piecewise convex relaxations) until convergence to a fixed point is
achieved.

123



Journal of Global Optimization

3.2 Main algorithm

The main loop of AMP, shown in lines 5–10 in Algorithm 1 and main algorithm block of the
flow chart in Fig. 2, performs three main operations:

1. First, the variable domains are refined adaptively, in a non-uniform manner (line 6 of
Algorithm 1).

2. A piecewise convex relaxation is constructed using the partitioned domain, which
is solved via outer-approximation to obtain an updated lower bound (line 7 of
Algorithm 1)

3. A local solve of the original, MINLP P , with the variables bounds restricted to the
partitions obtained by the lower bounding solution, is performed to obtain a new local
optimal solution. If this solution is better than the current incumbent, then the incumbent
is updated (lines 8 and 9 of Algorithm 1).

In the following subsections, we detail each of the three operations involved in the main loop
of AMP.

3.2.1 Variable domain partitioning

One of the core contributions of the AMP algorithm is the adaptive and non-uniform variable
partitioning scheme. This part of the algorithm determines how variables in nonconvex terms
of the original MINLP are partitioned. Existing approaches partition each variable domain
uniformly into a finite number of partitions and the number of partitions increases with the
number of iterations [7,12,18,19]. While this is a straight-forward approach for partition-
ing the variable domains, it potentially creates huge number of partitions far away from the
global optimal value of each variable, i.e., many of the partitions are not useful. Though
there have been methods, including sophisticated bound propagation techniques and loga-
rithmic encoding to alleviate this issue, they do not scale to large-scale MINLPs. Instead,
our approach successively tightens the relaxations with sparse, non-uniform partitions. This
approach focuses partitioning on regions of the variable domain that appear to influence
optimality the most. These regions are defined by a solution, σ , that is typically the lower
bound solution at the current iteration.

The adaptive domain partitioning algorithm of AMP refines the variable partitions at a
given iteration with a user parameter � > 1. � is used to control the size and number of
the partitions and influences the rate of convergence of the overall algorithm. The algorithm
is similar to the algorithm used for initializing the partitions in Sect. 3.1.1 (see Fig. 3). It
differs by using the lower bound solution obtained by solving the piecewise relaxations to
refine the partition. Again, for the sake of clarity, Fig. 4 illustrates the bivariate partition
refinement for a bilinear term produced by the adaptive domain partitioning algorithm at
successive iterations of the main algorithm. Figure 1a geometrically illustrates the tightening
of piecewise convex envelopes induced by the adaptive partitioning scheme. The pseudo-
code of the domain partitioning algorithm is given in Algorithm 4. The algorithm takes the
current variable partitions and a lower bound solution as input and outputs a refined set of
partitions for each variable. It first identifies, in line 3 of Algorithm 4, the partition where
the lower bound solution is located (active partition) and splits that partition into three new
partitions, whose sizes are defined by � and the size of the active partition (lines 7–11 in
Algorithm 4).

Exhaustiveness of variable domain partitioning scheme Exhaustiveness of a partitioning
scheme is one of the important requirements for any global optimization algorithm [23]. The

123



Journal of Global Optimization

Li Ui

Lj

Uj

), σk(xj)σk(xi

σk(xi)− (Ui−Li)
Δ

σk(xi) +
(Ui−Li)

Δ

σk(xj)− (Uj−Lj)
Δ

σk(xj) +
(Uj−Lj)

Δ

σk(xi), σk(xj)

ŷi1 = 0 ŷi2 = 1 ŷi3 = 0

ŷ j
1
=

0
ŷ j

3
=

0
ŷ j

2
=

1

lki uk
i

lkj

uk
j

(a) Iteration k

Li Ui

Lj

Uj

σk+1(xi), σk+1(xj)

σk+1(xi)− (uk
i −lki )
Δ

σk+1(xi) +
(uk

i −lki )
Δ

σk+1(xj)− (uk
j−lkj )
Δ

σk+1(xj) +
(uk

j−lkj )
Δ

σk+1(xi), σk+1(xj)

ŷi1 ŷi2 ŷi3 ŷi4 ŷi5

ŷ j
1

ŷ j
3
ŷ j

4
ŷ j

5
ŷ j

2

(b) Iteration k + 1

Fig. 4 Adaptive partitioning strategy for a bilinear function xi x j as described in Algorithm 4. Red and gray
colored boxes represent active and inactive partitions, respectively. k and k + 1 refer to successive solutions
used to partition the active partition. (Color figure online)

exhaustiveness of the adaptive domain partitioning scheme is built into AMP through the
lines 13–14 in Algorithm 4. These conditions ensure that the AMP algorithm does not get
stuck at a particular region of the variable. Instead, it guarantees that the largest partition
outside the active partition is further refined when the active partition’s width is less than a
partition-width tolerance value, ε p . Here, the largest inactive partition of a given variable is
analogous to the largest unexplored domain for that variable. Thus, the partitioning scheme
in the AMP algorithm satisfies the desirable exhaustiveness property.

123



Journal of Global Optimization

Algorithm 4 Variable Domain Partitioning

1: function RefinePartitions(PI , σ )
2: for i ∈ 1 . . . n do
3: k ← argmax σ(ŷki ) � Identifying the active partition for variable i

4: 〈li , ui 〉 ← Ik
i

5: ξi ← ui−li
�

6: if ξi > ε p then � Active partition is split into three partitions
7: γ1 ← min(li ,max(σ (xi ) − ξi , x

L
i ))

8: γ2 ← max(li , σ (xi ) − ξi )
9: γ3 ← min(ui , σ (xi ) + ξi )

10: γ4 ← max(ui ,min(σ (xi ) + ξi , x
U
i ))

11: Ii ← (I i \ 〈li , ui 〉) ∪ 〈γ1, γ2〉 ∪ 〈γ2, γ3〉 ∪ 〈γ3, γ4〉
12: else � Partitioning of largest inactive partition
13: 〈li , ui 〉 ← argmaxIi

ui − li

14: Ii ← (I i \ 〈li , ui 〉) ∪ 〈li , li + ui−li
2 〉 ∪ 〈li + ui−li

2 , ui 〉
15: end if
16: end for
17: return I
18: end function

3.2.2 Computing lower and upper bounds

Once the variable partitions are refined, the main loop of the AMP algorithm constructs and
solves a piecewise convex relaxation,PI (line 7 of Algorithm 1). EachPI is a convex MIP
where all the constraints are either linear or second-order cones (SOCs). Theoretically, PI

can be solved by off-the-shelf mixed-integer, conic solvers. However, initial computational
experiments suggested that several moderately sized problems with SOC constraints were
difficult to solve, even with state-of-the-art solvers. It was the case that either the solver
convergence was very slow or the solve terminated with a numerical error. To circumvent
this issue and solve these convex MIPs in a computationally efficient manner, the SOC
constraints in the convexMIP were outer-approximated via first-order approximations, using
the lazy-callback feature in the MIP solvers.

To obtain a new local optimal solution in the main loop of AMP (line 8 of Algorithm 1),
the feasible solution is obtained by solving the NLP,Pu , shown in Eq. (9).Pu is constructed
at each iteration of the main loop using the original MINLP,P , and the lower bound solution
computed at that iteration, σ .

Pu : minimize
x, y

f (x, y) (9a)

subject to g(x, y) ≤ 0, (9b)

h(x, y) = 0, (9c)

xli · σ (̂ yi ) ≤ xi ≤ xui · σ (̂ yi ), ∀ i = 1 . . . n (9d)

y = σ( y) (9e)

where constraint (9d) forces the variable assignments into the partition defined by the current
lower bound.Constraint (9e) fixes all the original binary variables to the lower bound solution.
Pu is then solved to local optimality using a local solver. The motivation for this approach
is based on empirical observations that the relaxed solution is often very near to the global
optimum solution and that theNLP is solved fast once all binary variables are fixed to constant

123



Journal of Global Optimization

values. Pu is essentially a projection of the relaxed solution (lower bound solution, σ ) back
onto a near point in the feasible region of P; this approach is often used for recovering
feasible solutions [7]. In the forthcoming Lemma 2, we claim that the value of the objective
function of the piecewise convex relaxation at each iteration monotonically increases to the
global optimum solution with successive partition refinements.

Lemma 2 Let σI denote the optimal solution to the formulation PI and let σ ∗ denote the
global optimal solution toP . Then, f I(σI)monotonically increases to f (σ ∗) as |I i | → ∞
for every i = 1, . . . , n.

Proof Without loss of generality, we assume P is feasible and restrict our discussion to
bilinear terms. Let xi x j be a bilinear term. Given a finite set of partitions, that is, 1 �
|I i |, |I j | < ∞, there always exists a partition in I i and I j that is active in the solution
to PI . Let the active partitions have lengths εli + εui and εlj + εuj , respectively. Given the
exhaustiveness property of the adaptive partitioning scheme discussed in Sect. 3.2.1, assume
the active partition contains the global optimum solution σ ∗(x∗, y∗).4 Then, we have

x∗
i − εli � xi � x∗

i + εui , x∗
j − εlj � x j � x∗

j + εuj .

For these active partitions, the McCormick constraints in (4a) and (4c) linearize xi x j as
follows:

x̂i j � (x∗
i − εli )x j + (x∗

j − εlj )xi − (x∗
i − εli )(x

∗
j − εlj )

= (x∗
i x j + x∗

j xi − x∗
i x

∗
j ) + εli (x

∗
j − x j ) + εlj (x

∗
i − xi ) − εli ε

l
j

︸ ︷︷ ︸
E(εli ,ε

l
j )

(10)

and

x̂i j � (x∗
i − εli )x j + (x∗

j + εuj )xi − (x∗
i − εli )(x

∗
j + εuj )

= (x∗
i x j + x∗

j xi − x∗
i x

∗
j ) + εli (x

∗
j − x j ) + εuj (xi − x∗

i ) + εli ε
u
j

︸ ︷︷ ︸
E(εli ,ε

u
j )

(11)

where, E(εli , ε
l
j ) < 0 and E(εli , ε

u
j ) > 0 are the error terms of the under- and over-estimator,

respectively. It is trivial to observe that the error terms themselves constitute the McCormick
envelopes of (x∗

i − xi )(x∗
j − x j ) if one were to linearize this product. Further, observing

that the error terms, as described above, are parametrized by the size of the active partition
containing the global optimum point, given by εli + εui and εlj + εuj , for variables xi and
x j , respectively, we now derive the analytic forms of these terms as a function of the total
number of partitions for the adaptive partitioning case.

Line 6 in Algorithm 1 ensures that the partitions created during the (k + 1)th iteration
of the main loop for either of the variables, xi or x j , is a subset of the partitions created
for the corresponding variables in the kth iteration. Also, for a kth iteration of an adaptive
refinement step for variables xi and x j , we assume that at most 3+ 2(k − 1) partitions exist
within the given variable bounds (Li ,Ui ) and (L j ,Uj ), respectively. Thus, the length of the
above mentioned active partition which contains the global solution is given by

εli + εui = Ui − Li

�
|Ii |−1

2

, εlj + εuj = Uj − L j

�
|I j |−1

2

.

4 Exhaustiveness of the partitioning scheme implies AMP will eventually partition all other domains small
enough such that AMP will pick an active partition with the global optimal whose length is ≤ εli + εui .

123



Journal of Global Optimization

Clearly as |I i | and |I j | approach ∞, the error terms of the McCormick envelopes, E(εli , ε
l
j )

and E(εli , ε
u
j ), approach zero, and thus enforcing xi = x∗

i , x j = x∗
j and x̂i j = x∗

i x
∗
j .

Therefore, as |I i | approaches ∞ for every variable i that is partitioned, f I(σI) approaches
the global optimal solution f (σ ∗).

Also observe that since F(PI) ⊂ F(P) for any finite I , f I(σI) � f (σ ∗). Here, F(·)
denotes the feasible space of the formulation of “·”. Furthermore, the partition set in iteration
k is a proper subset of the previous iteration’s partitions. This proves the monotonicity of the
sequence of values f I(σI) with increasing iterations of the main loop of AMP. ��

4 Computational results

In the remainder of this paper, we refer to AMP as Algorithm 1 without the implementation
of line 3, i.e., without any form of sequential OBBT. BT-AMP and PBT-AMP refer to Algo-
rithm 1 implemented with bound-tightening without and with partitions added, respectively.
The performance of these algorithms is evaluated on a set of standard benchmarks from the
literaturewithmutlilinear terms. These problems include a small NLP that is used to highlight
the differences between the sparse, adaptive approaches and uniform partitioning approaches.
The details and sources for each problem instance are shown later in this section in Table 7.
In this table, we also mention the continuous variables in mutlilinear terms chosen for parti-
tioning.5 Ipopt 3.12.8 and Bonmin 1.8.2 are used as local NLP and MINLP solvers for the
feasible solution computation in AMP, respectively.MILPs andMIQCQCPs are solved using
CPLEX 12.7 (cpx) and/or Gurobi 7.0.2 (grb) with default options and presolver switched
on. The outer-approximation algorithm was implemented using the lazy callback feature of
CPLEX and Gurobi. Given that the bound-tightening procedure consists of independently
solvable problems, 10 parallel threads were used during bound-tightening. In the Appendix
we provide a detailed sensitivity analysis of the parameters of AMP.

Everybound-tightening (BTandPBT)problemwas solved to optimality (exceptmeyer15).
Formeyer15, 0.1% optimality gapwas used as a termination criteria because it is a large-scale
MINLP. The value of ε and the “TimeOut” parameter in Algorithm 1 were set to 0.0001 and
3600s, respectively. However, for BT and PBT, we did not impose any time limit. Thus, for a
fair comparison, we set the time limit for the global solver to be the sum of bound tightening
time and 3600s (denoted by T+ in the tables). In the results, “TO” indicates that the AMP
solve timed-out. All results are benchmarked with BARON 17.1, a state-of-the-art global
optimization solver [47,49]. CPLEX 12.7 and Ipopt 3.12.8 are used as the underlying MILP
and non-convex local solvers for BARON. JuMP, an algebraic modeling language in Julia
[14], was used for implementing all the algorithms and invoking the optimization solvers.
All the computational experiments were performed using the high-performance computing
resources at the Los Alamos National Laboratory with Intel CPU E5-2660-v3, Haswell
micro-architecture, 20 cores (2 threads per core) and 125GB of memory.

5 See [8] for more details on strategies for choosing the variables for partitioning.

123



Journal of Global Optimization

4.1 Performance on a small-scale NLP

NLP1: minimize
x1,...,x8

x1 + x2 + x3

subject to 0.0025(x4 + x6) − 1 ≤ 0,

0.0025(−x4 + x5 + x7) − 1 ≤ 0,

0.01(−x5 + x8) − 1 ≤ 0,

100x1 − x1x6 + 833.33252x4 − 83333.333 ≤ 0,

x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0,

x3x5 − x3x8 − 2500x5 + 1250000 ≤ 0,

100 ≤ x1 ≤ 10000,

1000 ≤ x2, x3 ≤ 10000,

10 ≤ x4, x5, x6, x7, x8 ≤ 1000

In this section, we perform a detailed study of AMP with and without OBBT on NLP1,
a small-scale, continuous nonlinear program adapted from Problem 106 in [21]. This small
problem helps illustrate many of the salient features of AMP. NLP1 has gained consid-
erable interest from the global optimization literature due its large variable bounds and
weak McCormick relaxations. Since this is a challenging problem for uniform, piecewise
McCormick relaxations, this problem has been studied in detail in [11,12,50]. The value
of the global optimum for NLP1 is 7049.2479 and the solution is x∗

i , i = 1, . . . , 8 =
[579.307, 1359.97, 5109.97, 182.018, 295.601, 217.982, 286.417, 395.601].

4.1.1 AMP versus uniform partitioning on NLP1

Figure 5 compares AMP (without BT/PBT) with a uniform partitioning strategy that is often
used in state-of-the-art solvers to obtain global solutions. For a fair comparison, we used the
same number of partitions for both methods at every iteration. From Fig. 5a, it is evident that
AMP exhibits larger optimality gaps in the first few iterations (134%, 44%, 20%, vs. 97%,
44%, 16%, etc.). However, the convergence rate to global optimum is much faster with AMP
(within 190.9 s). This behaviour is primarily attributed to the adaptive addition of partitions
around the best-known local solution (also global in this case) instead of spreading them
uniformly.

4.1.2 Performance of AMP on NLP1

Figure 6 shows the active partitions chosen by every iteration of AMP for� = 4. This figure
illustrates the active partitions at each iteration of the main loop of AMP and the convergence
of each variable partition to its corresponding global optimal value. One of the primary
motivations of the adaptive partitioning strategy comes from the observation that every new
partition added adaptively refines the regions (hopefully) closer to the global optimumvalues.
In Fig. 6a, this behaviour is clearly evident on all the variables except x3. Although the initial
active partition on x3 did not contain the global optimum, AMP converged to the global
optimum value. The convergence time of AMP to the global optimum using Gurobi was
190.9s. The total number of binary partitioning variables is 152 (19 per continuous variable).

123



Journal of Global Optimization

0 5 10 15 20

0.01

0.1

1.0

10

100

Iterations

O
pt
im

al
it
y
ga

p
(%

)
Adaptive
Uniform

GOpt

0.6%

(a) Optimality gap

0 5 10 15 20
1

10

100

1000

Iterations

C
um

ul
at
iv
e
ti
m
e
(s
ec
)

Adaptive
Uniform

190.9

3600
(TO)

(b) Cumulative time

Fig. 5 Performance of AMP (� = 4) and uniform partitioning on NLP1. Note that the y-axis is on log scale

2 4 6 8

0

2000

4000

6000

8000

Iterations

B
ou

nd
s
of

ac
ti
ve

pa
rt
it
io
ns x1

x3

x1, x3

2 4 6 8

0

1000

2000

3000

Iterations

B
ou

nd
s
of

ac
ti
ve

pa
rt
it
io
ns x2

x4

x2, x4

2 4 6 8

200

400

Iterations

B
ou

nd
s
of

ac
ti
ve

pa
rt
it
io
ns x5

x6

0

x5, x6

2 4 6 8
0

200

400

600

Iterations

B
ou

nd
s
of

ac
ti
ve

pa
rt
it
io
ns x7

x8

(a) Variables (b) Variables

(c) Variables (d) Variables x7, x8

Fig. 6 Upper and lower bounds of active partitions chosen byAMPalgorithm (withoutOBBT) for the variables
xi , i = 1, . . . , 8 of NLP1

123



Journal of Global Optimization

0 5 10 15 20

Iterations

0

2000

4000

6000

8000

10000

12000

14000

16000 Bound tightening

Partition-based
bound tightening (Δ = 4)

|| x
u

reti
−
x

l
reti
|| 2

Tightened bounds after each iteration

0 5 10 15 20

Iterations

0

1

2

3

4

5

6

7

8

9

10

T
im

e
(s

ec
)

Bound tightening

Partition-based
bound tightening (Δ = 4)

Time per iteration(a) (b)

Fig. 7 Performance of sequential BT and sequential PBT techniques on NLP1

Table 1 Contracted bounds after applying sequential bound tightening to nlp1

Variable Original bounds PBT bounds #BVars added

L U L U BT, AMP (� = 4) PBT, AMP (� = 4)

x1 100 10, 000 573.1 585.1 0, 14 3, 3

x2 1000 10, 000 1351.2 1368.5 0, 14 3, 3

x3 1000 10, 000 5102.1 5117.5 0, 15 3, 3

x4 10 1000 181.5 182.5 0, 15 3, 3

x5 10 1000 295.3 296.0 0, 15 3, 3

x6 10 1000 217.5 218.5 0, 15 3, 3

x7 10 1000 286.0 286.9 0, 15 3, 3

x8 10 1000 395.3 396.0 0, 15 3, 3

Total 118 48

4.1.3 Benefits of MIP-based OBBT on NLP1

Figure 7 and Table 1 show the effectiveness of sequential BT and sequential PBT techniques
on NLP1. As expected, in Fig. 7a, the disjunctive polyhedral representation of the relaxed
regions in PBT (around the initial local solution) drastically reduce the global bounds on the
variables (to almost zero gaps). Figure 7b shows that PBT, even when solving a MILP in
every iteration, does not incur too much computational overhead on a small-scale problem
like NLP1.

A qualitative description of the improved performance is presented in Table 1. The column
titled “#BVars added” shows the total number of partitions that were added for each variable
for BT-AMP and PBT-AMP. While BT adds no partitions and AMP adds a total of 118
partitions, PBT adds a total of 24 partitions in addition to 24 more partitions during AMP.
As is seen in the results in the “PBT bounds” column, the bounds of the variables are
tightened to near global optimum values and AMP needs very few additional partitions to
prove global optimality within 40s. In contrast, AMP adds a lot more partitions as the bounds
of the variables after BT are not tight enough. Overall, for NLP1, it is noteworthy that PBT-
AMP outperforms most of the state-of-the-art piecewise relaxation methods developed in the
literature.

123



Journal of Global Optimization

4.2 Performance of AMP on large-scale MINLPs

In this section we assess the empirical value of adaptive partitioning by presenting results
without OBBT. In Table 2, AMP (without OBBT) with CPLEX or Gurobi is compared with
BARON. Columns two and three show the run times of Couenne and BARON, respectively,
based on the 3600 second time limit. Column four shows the performance of AMP for
� = 8. Though � = 8 is not the ideal setting for every instance, it is analogous to running
BARON/Couenne with default parameters. Under the default AMP settings, AMP is faster
than BARON and Couenne (with default settings) at finding the best lower bound in 23 out
of 34 instances. These results of AMP are the most fair to compare with untuned BARON
and Couenne

In column five (tuned� and CPLEX), the run times of AMP are much faster than BARON
and Couenne in 24 out of 34 instances. Column six (tuned � and Gurobi) again indicates
that the right choice of � speeds up the convergence of AMP drastically. More interestingly,
on 21 out of 34 instances, the run times of AMP using Gurobi are substantially better than
the run times using CPLEX (column 5).

Table 2 is summarized with a cumulative distribution plot in Fig. 8. Clearly, Figure 8a
indicates that AMP is better able to find solutions within a 0.4% optimality gap (even without
tuning). Figure 8b provides evidence of the overall strength of AMP. Even when AMP is not
the fastest approach, its run times are very similar to BARON. Overall, the performance of
AMP is clearly better using Gurobi as the underlying MILP/MIQCQP solver. We did not
perform comparative studies of BARON with Gurobi because it cannot currently integrate
with Gurobi.

4.3 Performance of AMPwith OBBT

We next discuss the performance of AMP when OBBT is added.

4.3.1 Default parameters of1

We first consider AMPwith OBBTwhen AMP uses the default parameter of� = 8. Table 3,
compares AMP with BARON. Column two shows the run times of BARON based on a
prescribed time limit. For comparison purposes with AMP, the time limit of BARON is
calculated as the sum of 3600s and the maximum of the run time of BT and PBT. For the
purposes of this study, we did not specify a time limit on BT and PBT, though this could be
added.

Column three shows the performance of BT-AMPwhen� = 8. While a constant� is not
the ideal parameter for every instance, BT-AMPwithCPLEX is still faster thanBARONon21
out of 32 instances. Similarly, BT-AMP with Gurobi is faster in 25 out of 32 instances. Once
again, AMP with Gurobi has significant computational advantages over CPLEX. Instances
blend480, blend721, blend852, and meyer10 demonstrated an order of magnitude improve-
ment. Column four of Table 3 shows the results of PBT-AMP when � = 10. Though PBT
solves a more complicated, discrete optimization problem at every step of bound-tightening,
surprisingly, the total time spent in bound-tightening was typically significantly smaller. This
is seen in all instances prefixedwith “ex”, the util instance, the eniplac instance, themeanvarx
instance and a few blend instances. In general, using partition-based OBBT yields significant
improvements in the overall run times and optimality gaps of AMP.

123



Journal of Global Optimization

Ta
bl
e
2

Su
m
m
ar
y
of

th
e
pe
rf
or
m
an
ce

of
A
M
P
w
ith

ou
tO

B
B
T
on

al
li
ns
ta
nc
es

In
st
an
ce
s

C
O
U
E
N
N
E

B
A
R
O
N

A
M
P-
cp
x

�
=

8
A
M
P-
cp
x

�
∗

A
M
P-
gr
b

�
∗

G
ap

T
G
ap

T
G
ap

T
�

G
ap

T
�

G
ap

T

p1
G
O
pt

0.
01

G
O
pt

0.
02

G
O
pt

0.
26

32
G
O
pt

0.
19

32
G
O
pt

0.
06

p2
G
O
pt

0.
01

G
O
pt

0.
01

G
O
pt

0.
05

16
G
O
pt

0.
03

32
G
O
pt

0.
10

fu
el

In
f

N
/A

G
O
pt

0.
03

G
O
pt

0.
07

4
G
O
pt

0.
03

4
G
O
pt

0.
05

ex
12

23
a

G
O
pt

0.
01

G
O
pt

0.
02

G
O
pt

0.
01

32
G
O
pt

0.
01

16
G
O
pt

0.
02

ex
12
64

G
O
pt

2.
04

G
O
pt

1.
44

G
O
pt

1.
42

16
G
O
pt

0.
90

8
G
O
pt

0.
79

ex
12

65
G
O
pt

5.
22

G
O
pt

13
.3
0

G
O
pt

0.
94

16
G
O
pt

0.
17

8
G
O
pt

0.
28

ex
12

66
G
O
pt

5.
37

G
O
pt

10
.8
1

G
O
pt

0.
27

32
G
O
pt

0.
14

32
G
O
pt

0.
16

en
ip
la
c

G
O
pt

12
8.
82

G
O
pt

20
7.
37

G
O
pt

1.
17

32
G
O
pt

0.
68

32
G
O
pt

0.
75

ut
il

G
O
pt

14
.5
6

G
O
pt

0.
10

G
O
pt

1.
21

16
G
O
pt

0.
54

16
G
O
pt

0.
55

m
ea
nv
ar
x

G
O
pt

1.
06

G
O
pt

0.
05

G
O
pt

29
0.
61

16
G
O
pt

95
.5
1

16
G
O
pt

70
.0
9

bl
en
d0

29
G
O
pt

35
.1
8

G
O
pt

2.
46

G
O
pt

1.
74

32
G
O
pt

0.
74

32
G
O
pt

1.
00

bl
en
d5

31
3.
06

T
O

G
O
pt

11
1.
79

G
O
pt

18
5.
33

8
G
O
pt

18
5.
33

16
G
O
pt

49
.7
6

bl
en
d1

46
4.
19

T
O

2.
20

T
O

2.
01

T
O

8
2.
01

T
O

8
1.
60

T
O

bl
en
d7

18
15

6.
45

T
O

17
5.
10

T
O

G
O
pt

37
9.
58

8
G
O
pt

37
9.
58

8
G
O
pt

58
1.
68

bl
en
d4

80
10

2.
41

T
O

G
O
pt

32
6.
95

0.
32

T
O

32
0.
04

T
O

16
0.
02

T
O

bl
en
d7

21
0.
60

T
O

G
O
pt

54
8.
90

G
O
pt

50
4.
74

32
G
O
pt

25
6.
77

16
G
O
pt

17
6.
11

bl
en
d8

52
1.
74

T
O

0.
08

T
O

G
O
pt

75
0.
88

4
G
O
pt

16
9.
24

16
G
O
pt

32
2.
80

w
ts
M
2_

05
G
O
pt

34
26

.2
8

G
O
pt

15
3.
30

20
.0
8

T
O

8
20

.0
8

T
O

32
G
O
pt

38
6.
95

w
ts
M
2_

06
31

.9
5

T
O

G
O
pt

22
8.
18

8.
76

T
O

4
G
O
pt

23
95

.7
1

32
G
O
pt

97
2.
20

w
ts
M
2_
07

G
O
pt

68
.3
7

G
O
pt

75
9.
96

0.
10

T
O

8
0.
10

T
O

16
0.
54

T
O

w
ts
M
2_

08
39

.4
3

T
O

38
8.
62

T
O

9.
82

T
O

4
5.
45

T
O

4
7.
92

T
O

w
ts
M
2_

09
60

.3
7

T
O

In
f

T
O

68
.5
8

T
O

10
36

.4
7

T
O

4
7.
47

T
O

123



Journal of Global Optimization

Ta
bl
e
2

co
nt
in
ue
d

In
st
an
ce
s

C
O
U
E
N
N
E

B
A
R
O
N

A
M
P-
cp
x

�
=

8
A
M
P-
cp
x

�
∗

A
M
P-
gr
b

�
∗

G
ap

T
G
ap

T
G
ap

T
�

G
ap

T
�

G
ap

T

w
ts
M
2_

10
0.
64

T
O

76
.4
8

T
O

35
.8
8

T
O

32
24

.9
5

T
O

16
0.
10

T
O

w
ts
M
2_

11
64

.7
1

T
O

10
7.
56

T
O

7.
88

T
O

16
3.
50

T
O

4
6.
10

T
O

w
ts
M
2_

12
68

.5
6

T
O

85
.3
5

T
O

8.
07

T
O

4
7.
46

T
O

32
4.
00

T
O

w
ts
M
2_

13
47

.7
4

T
O

54
.0
4

T
O

10
.0
6

T
O

4
4.
24

T
O

8
5.
72

T
O

w
ts
M
2_

14
47

.1
5

T
O

46
.2
4

T
O

9.
02

T
O

32
6.
34

T
O

16
1.
43

T
O

w
ts
M
2_

15
61

.3
2

T
O

In
f

T
O

86
.6
4

T
O

4
8.
81

T
O

8
0.
22

T
O

w
ts
M
2_

16
26

.7
2

T
O

47
.7
7

T
O

34
.4
6

T
O

8
34

.4
6

T
O

32
5.
25

T
O

le
e1

G
O
pt

46
.9
7

G
O
pt

14
5.
55

G
O
pt

13
.0
1

8
G
O
pt

13
.0
1

8
G
O
pt

13
.6
1

le
e2

G
O
pt

60
.4
3

G
O
pt

59
0.
08

0.
58

T
O

16
0.
47

T
O

16
0.
08

T
O

m
ey
er
4

In
f

N
/A

80
.4
0

T
O

G
O
pt

18
.8
5

4
G
O
pt

12
.5
0

8
G
O
pt

5.
68

m
ey
er
10

80
.8
8

T
O

23
9.
70

T
O

G
O
pt

T
O

4
G
O
pt

45
2.
53

8
G
O
pt

13
3.
47

m
ey
er
15

In
f

N
/A

28
50

.3
0

T
O

0.
59

T
O

16
0.
31

T
O

4
0.
10

T
O

H
er
e,
w
e
co
m
pa
re

th
e
ru
n
tim

es
of

B
A
R
O
N
,A

M
P
w
ith

�
=

8
(c
px
),
A
M
P
w
ith

th
e
be
st

�
(c
px
)
an
d
A
M
P
w
ith

th
e
be
st

�
(g
rb
).
V
al
ue
s
un

de
r
“G

ap
”
an
d
“T

”
ar
e
in

%
an
d

se
co
nd
s,
re
sp
ec
tiv

el
y.
“I
nf
”
im

pl
ie
s
th
at
th
e
so
lv
er

fa
ile
d
to

pr
ov
id
e
a
bo
un
d
w
ith

in
th
e
pr
es
cr
ib
ed

tim
e
lim

it.
Fo

r
ea
ch

in
st
an
ce
,t
he

bo
ld

fa
ce

fo
nt

re
pr
es
en
ts
be
st
ru
n
tim

e
or

th
e

be
st
op
tim

al
ity

ga
p
(i
f
th
e
so
lv
e
tim

es
ou
t)

123



Journal of Global Optimization

GOpt 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12
.8

25
.6

51
.2

10
2.4

20
4.8

40
9.6 In

f
0.4

0.5

0.6

0.7

0.8

0.9

1.0

BARON
AMP-cpx (Δ = 8)
AMP-cpx (best Δ)
AMP-grb (best Δ)

p

Best gap (%)
(a)Comparison of best gap

1 10 20 30 40 50 60 70 80 90
10

0+
0.0

0.2

0.4

0.6

0.8

1.0

p

Time factor

BARON
AMP-cpx (Δ = 8)
AMP-cpx (best Δ)
AMP-grb (best Δ)

Comparison of best run times(b)

Fig. 8 Performance profiles of AMP (without OBBT) and BARON. In a the x axis plots the optimality gap
of the algorithms and the y axis plots fraction of instances. Plot a tracks the number of instances where an
algorithm is able achieve the specified optimality gap. In b the x axis denotes the run time ratio of an algorithm
with the best run time of any algorithm. The y axis denotes the fraction of instances. Plot b tracks the number
of times an algorithm’s run time is within a specified factor of the best run time of any algorithm. In both
figures, higher is better. Overall, AMP performs better than BARON on a p proportion of instances for most
gaps and all run times

The bound-tightening procedure also compares favorably with BARON. For example,
consider problem blend852. Though BARON implements a sophisticated bound-tightening
approach that is based on primal and dual formulations, BARON times out with a 0.08% gap.
In contrast, BT-AMP with Gurobi converges to the global optimum in 434.7 s and PBT-AMP
converges to the global optimum in 78.1 s (an order-of-magnitude improvement). Similar
behaviour is observed on the remaining blend, wts and meyer instances. Overall, AMP with
Gurobi outperforms BARON on 24 out of 32 instances when a default choice of � is used.

Table 3 is summarized with a cumulative distribution plot in Fig. 9. Clearly, Fig. 9a indi-
cates that BT-AMP and PBT-AMP with Gurobi performs better than BARON even without
tuning �. In Fig. 9a, AMP has a better profile when the optimality gap is > 0.4%. In Fig. 9a,

123



Journal of Global Optimization

Ta
bl
e
3

Pe
rf
or
m
an
ce

su
m
m
ar
y
of

A
M
P
w
ith

O
B
B
T
on

al
li
ns
ta
nc
es

In
st
an
ce
s

B
A
R
O
N

B
T

A
M
P-
cp
x

A
M
P-
gr
b

PB
T

A
M
P-
cp
x

A
M
P-
gr
b

G
ap

T
T

+
G
ap

T
G
ap

T
T

+
G
ap

T
G
ap

T

fu
el

G
O
pt

0.
03

0.
01

G
O
pt

0.
03

G
O
pt

0.
03

0.
01

G
O
pt

0.
04

G
O
pt

0.
03

ex
12

23
a

G
O
pt

0.
02

19
.7
1

G
O
pt

0.
01

G
O
pt

0.
01

0.
30

G
O
pt

0.
01

G
O
pt

0.
02

ex
12

64
G
O
pt

1.
44

12
.4
7

G
O
pt

1.
77

G
O
pt

1.
32

0.
72

G
O
pt

1.
48

G
O
pt

1.
24

ex
12

65
G
O
pt

13
.3

6.
02

G
O
pt

0.
25

G
O
pt

0.
88

1.
02

G
O
pt

0.
26

G
O
pt

0.
74

ex
12

66
G
O
pt

10
.8
1

13
.7
5

G
O
pt

0.
12

G
O
pt

0.
06

1.
30

G
O
pt

0.
04

G
O
pt

0.
06

en
ip
la
c

G
O
pt

20
7.
37

16
.0
4

G
O
pt

1.
13

G
O
pt

1.
36

3.
34

G
O
pt

1.
17

G
O
pt

1.
59

ut
il

G
O
pt

0.
10

9.
92

G
O
pt

0.
17

G
O
pt

0.
19

0.
61

G
O
pt

0.
14

G
O
pt

0.
16

m
ea
nv
ar
x

G
O
pt

0.
05

20
.6
9

G
O
pt

95
.2
3

G
O
pt

59
.3
3

3.
53

G
O
pt

13
.6
2

G
O
pt

13
.3
1

bl
en
d0

29
G
O
pt

2.
46

15
.0
5

G
O
pt

1.
04

G
O
pt

1.
56

0.
80

G
O
pt

0.
88

G
O
pt

0.
95

bl
en
d5

31
G
O
pt

11
1.
79

44
.6
7

G
O
pt

38
.6
0

G
O
pt

22
.5
6

47
7.
94

G
O
pt

39
.8
9

G
O
pt

20
.1
2

bl
en
d1

46
2.
20

T
O

30
.9
5

24
.9
2

T
O

0.
10

T
O

26
.6
6

24
.9
8

T
O

23
.6
9

T
O

bl
en
d7

18
17

5.
10

T
O

28
.7
6

G
O
pt

13
32

.6
6

G
O
pt

13
35

.9
3

20
.8

14
.6
5

T
O

G
O
pt

86
8.
14

bl
en
d4

80
G
O
pt

32
6.
95

13
7.
62

0.
21

T
O

G
O
pt

10
8.
93

16
99

.1
8

8.
78

T
O

G
O
pt

24
66

.1
7

bl
en
d7

21
G
O
pt

54
8.
9

29
.4
4

G
O
pt

64
6.
92

G
O
pt

18
1.
88

23
.9
2

G
O
pt

93
.2
8

G
O
pt

11
2.
91

bl
en
d8

52
0.
08

T
O

41
.7
3

G
O
pt

74
9.
03

G
O
pt

39
2.
99

29
.4
0

G
O
pt

21
7.
62

G
O
pt

48
.7
9

w
ts
M
2_

05
G
O
pt

15
3.
30

14
.8
2

0.
24

T
O

0.
02

T
O

0.
34

0.
22

T
O

G
O
pt

28
75

.1
7

w
ts
M
2_

06
G
O
pt

22
8.
18

15
.5
2

0.
01

T
O

0.
01

T
O

0.
33

0.
02

T
O

G
O
pt

19
57

.5
9

w
ts
M
2_

07
G
O
pt

75
9.
96

16
.1
5

0.
26

T
O

0.
30

T
O

0.
22

0.
04

T
O

1.
59

T
O

w
ts
M
2_

08
38

8.
62

T
O

21
.5
4

14
.3
7

T
O

14
.7
2

T
O

0.
90

20
.0
8

T
O

19
.9
4

T
O

w
ts
M
2_

09
In
f

T
O

42
.2
8

61
.9
9

T
O

64
.5
3

T
O

13
.9
6

56
.7
2

T
O

55
.8
5

T
O

w
ts
M
2_

10
76

.4
8

T
O

15
.7
3

0.
10

T
O

0.
07

T
O

0.
32

0.
22

T
O

0.
22

T
O

123



Journal of Global Optimization

Ta
bl
e
3

co
nt
in
ue
d

In
st
an
ce
s

B
A
R
O
N

B
T

A
M
P-
cp
x

A
M
P-
gr
b

PB
T

A
M
P-
cp
x

A
M
P-
gr
b

G
ap

T
T

+
G
ap

T
G
ap

T
T

+
G
ap

T
G
ap

T

w
ts
M
2_

11
10

7.
56

T
O

22
.6
4

9.
76

T
O

3.
74

T
O

1.
09

13
.8
1

T
O

9.
18

T
O

w
ts
M
2_

12
85

.3
5

T
O

39
.1
0

11
.9
0

T
O

11
.9
2

T
O

3.
44

6.
03

T
O

11
.0
2

T
O

w
ts
M
2_

13
54

.0
4

T
O

11
1.
39

2.
01

T
O

3.
95

T
O

17
.0
0

2.
17

T
O

2.
10

T
O

w
ts
M
2_

14
46

.2
4

T
O

19
.0
9

6.
64

T
O

4.
71

T
O

1.
10

1.
93

T
O

1.
93

T
O

w
ts
M
2_

15
In
f

T
O

14
.9
3

0.
29

T
O

0.
50

T
O

0.
34

0.
51

T
O

0.
48

T
O

w
ts
M
2_

16
47

.7
7

T
O

22
.5
4

8.
76

T
O

6.
91

T
O

1.
18

9.
40

T
O

5.
11

T
O

le
e1

G
O
pt

14
5.
55

13
.2
8

G
O
pt

12
.5
0

G
O
pt

13
.5
5

0.
22

10
.0
0

T
O

0.
01

T
O

le
e2

G
O
pt

59
0.
08

14
.9
2

0.
58

T
O

0.
37

T
O

5.
35

0.
43

T
O

0.
07

T
O

m
ey
er
4

80
.4
0

T
O

15
.7
8

G
O
pt

4.
22

G
O
pt

4.
47

23
8.
47

G
O
pt

14
.7
6

G
O
pt

13
.6
8

m
ey
er
10

23
9.
70

T
O

44
.6
8

9.
74

T
O

G
O
pt

29
25

.3
6

63
.7
9

G
O
pt

T
O

G
O
pt

11
89

.7
1

m
ey
er
15

25
56

.3
7

T
O

38
77

.0
9

3.
44

T
O

0.
08

T
O

17
86

8.
96

G
O
pt

T
O

G
O
pt

T
O

H
er
e,
w
e
co
m
pa
re

th
e
ru
n
tim

es
of

B
A
R
O
N
,B

T-
A
M
P
w
ith

�
=

8
an
d
PB

T-
A
M
P
w
ith

�
=

10
.C

PL
E
X
an
d
G
ur
ob

ia
re

th
e
un

de
rl
yi
ng

so
lv
er
s
fo
r
A
M
P.
V
al
ue
s
un

de
r
“G

ap
”

an
d
“T

,
T

+ ”
ar
e
in

%
an
d
se
co
nd
s,
re
sp
ec
tiv

el
y.
“I
nf
”
im

pl
ie
s
th
at
th
e
so
lv
er

fa
ile
d
to

pr
ov
id
e
a
bo
un
d
w
ith

in
th
e
pr
es
cr
ib
ed

tim
e
lim

it

123



Journal of Global Optimization

GOpt 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12
.8

25
.6

51
.2

10
2.4

20
4.8

40
9.6 inf

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BARON
BT-AMP-cpx (Δ = 8)
BT-AMP-grb (Δ = 8)
PBT-AMP-cpx (Δ = 10)
PBT-AMP-grb (Δ = 10)

Best gap (%)

p

(a) Comparison of best gap

1 10 20 30 40 50 60 70 80 90
10

0+
0.0

0.2

0.4

0.6

0.8

1.0

Factor of best time

BARON
BT-AMP-cpx (Δ = 8)
BT-AMP-grb (Δ = 8)
PBT-AMP-cpx (Δ = 10)
PBT-AMP-grb (Δ = 10)

p

(b) Comparison of best run times

Fig. 9 Performance profiles of AMP (with OBBT) and BARON. In a the x axis plots the optimality gap of the
algorithms and the y axis plots fraction of instances. Plot a tracks the number of instances where an algorithm
is able achieve the specified optimality gap. In b the x axis denotes the run time ratio of an algorithm with
the best run time of any algorithm. The y axis denotes the fraction of instances. Plot b tracks the number of
times an algorithm’s run time is within a specified factor of the best run time of any algorithm. In both figures,
higher is better. Overall, AMP performs better than BARON on p proportion of instances within a factor of
the best gap and with the best run times

the performance improvement starts at 0.2%. However, there is an increase in run times due
to bound-tightening (Fig. 9b), that allows to AMP to achieve this improvement.

Remark 2 meyer15, a generalized pooling problem-based instance, is classified as a large-
scale MINLP and is very hard for global optimization. The current best known gap for this
instance is 0.1% [9,36]. PBT-AMPwith Gurobi has closed this problem by proving the global
optimum for the first time (943,734.0215–Table 3).

123



Journal of Global Optimization

Ta
bl
e
4

Su
m
m
ar
y
of

th
e
pe
rf
or
m
an
ce

of
A
M
P
w
ith

an
d
w
ith

ou
tO

B
B
T
on

al
li
ns
ta
nc
es

In
st
an
ce
s

B
A
R
O
N

B
T-
A
M
P-
gr
b

PB
T-
A
M
P-
gr
b

G
ap

T
�

∗
G
ap

T
+

T
�

∗
G
ap

T
+

T

fu
el

G
O
pt

0.
03

8
G
O
pt

0.
01

0.
04

8
G
O
pt

0.
01

0.
04

ex
12

23
a

G
O
pt

0.
02

8
G
O
pt

19
.7
1

0.
01

32
G
O
pt

0.
31

0.
01

ex
12

64
G
O
pt

1.
44

4
G
O
pt

12
.4
7

0.
59

4
G
O
pt

0.
84

0.
49

ex
12

65
G
O
pt

13
.3
0

16
G
O
pt

6.
02

0.
45

16
G
O
pt

0.
92

0.
46

ex
12

66
G
O
pt

10
.8
1

8
G
O
pt

13
.7
5

0.
06

4
G
O
pt

1.
18

0.
09

en
ip
la
c

G
O
pt

20
7.
37

32
G
O
pt

16
.0
4

0.
45

32
G
O
pt

3.
34

0.
64

ut
il

G
O
pt

0.
10

4
G
O
pt

9.
92

0.
08

4
G
O
pt

0.
56

0.
09

m
ea
nv
ar
x

G
O
pt

0.
05

16
G
O
pt

20
.6
9

21
.1
7

16
G
O
pt

3.
45

15
.5
7

bl
en
d0

29
G
O
pt

2.
46

32
G
O
pt

15
.0
5

0.
92

16
G
O
pt

1.
09

1.
33

bl
en
d5

31
G
O
pt

11
1.
79

8
G
O
pt

44
.6
7

22
.5
6

32
G
O
pt

23
9.
17

84
.9
7

bl
en
d1

46
2.
20

T
O

8
0.
10

30
.9
5

T
O

8
2.
10

23
.0
6

T
O

bl
en
d7

18
17

5.
10

T
O

32
G
O
pt

28
.7
6

88
9.
28

8
G
O
pt

21
.8
0

11
01

.5
6

bl
en
d4

80
G
O
pt

32
6.
95

8
G
O
pt

13
7.
62

10
8.
93

16
G
O
pt

94
8.
27

21
85

.0
3

bl
en
d7

21
G
O
pt

54
8.
90

16
G
O
pt

29
.4
4

92
.2
7

32
G
O
pt

9.
87

90
.9
1

bl
en
d8

52
0.
08

T
O

16
G
O
pt

41
.7
3

32
3.
86

16
G
O
pt

14
.1
6

32
3.
31

123



Journal of Global Optimization

Ta
bl
e
4

co
nt
in
ue
d

In
st
an
ce
s

B
A
R
O
N

B
T-
A
M
P-
gr
b

PB
T-
A
M
P-
gr
b

G
ap

T
�

∗
G
ap

T
+

T
�

∗
G
ap

T
+

T

w
ts
M
2_
05

G
O
pt

15
3.
30

16
G
O
pt

14
.8
2

24
82

.7
3

16
G
O
pt

0.
33

24
83

.3
6

w
ts
M
2_
06

G
O
pt

22
8.
18

16
G
O
pt

15
.5
2

20
58

.9
2

16
G
O
pt

0.
39

20
57

.2
0

w
ts
M
2_
07

G
O
pt

75
9.
96

8
0.
30

16
.1
5

T
O

8
0.
30

0.
24

T
O

w
ts
M
2_

08
38

8.
62

T
O

4
8.
25

21
.5
4

T
O

4
8.
25

24
.4
3

T
O

w
ts
M
2_

09
In
f

T
O

16
44

.5
7

42
.8
0

T
O

16
43

.6
6

28
8.
88

T
O

w
ts
M
2_

10
76

.4
8

T
O

8
0.
07

15
.7
3

T
O

8
0.
06

0.
39

T
O

w
ts
M
2_

11
10

7.
56

T
O

8
3.
74

22
.6
4

T
O

8
2.
39

1.
11

T
O

w
ts
M
2_

12
85

.3
5

T
O

4
(6
.8
9)

7.
29

39
.1
0

T
O

8
(6
.9
5)

7.
34

3.
70

T
O

w
ts
M
2_

13
54

.0
4

T
O

8
3.
95

11
1.
39

T
O

4
6.
92

13
0.
31

T
O

w
ts
M
2_

14
46

.2
4

T
O

32
2.
71

19
.0
9

T
O

8
2.
25

0.
67

T
O

w
ts
M
2_

15
In
f

T
O

32
0.
20

14
.9
3

T
O

16
0.
28

0.
35

T
O

w
ts
M
2_

16
47

.7
7

T
O

4
(2
.6
1)

5.
81

22
.5
4

T
O

4
(3
.0
4)

6.
24

24
.4
1

T
O

le
e1

G
O
pt

14
5.
55

8
G
O
pt

13
.2
8

13
.5
5

8
G
O
pt

0.
27

13
.6
8

le
e2

G
O
pt

59
0.
08

16
0.
36

14
.9
2

T
O

4
0.
38

2.
96

T
O

m
ey
er
4

80
.4
0

T
O

8
G
O
pt

15
.7
8

4.
47

4
G
O
pt

77
.6
1

8.
45

m
ey
er
10

23
9.
70

T
O

4
G
O
pt

44
.6
8

76
0.
36

4
G
O
pt

34
.6
7

77
5.
74

m
ey
er
15

25
56

.3
7

T
O

4
0.
02

38
77

.0
9

T
O

4
G
O
pt

19
21

8.
84

53
8.
56

H
er
e,

w
e
co
m
pa
re

th
e
ru
n
tim

es
of

B
A
R
O
N
,
B
T-
A
M
P
an
d
PB

T-
A
M
P
w
ith

tu
ne
d
va
lu
es

of
�

fo
r
ea
ch

in
st
an
ce
.
V
al
ue
s
un
de
r
“G

ap
”
an
d
“T

,
T

+ ”
ar
e
in

%
an
d
se
co
nd
s,

re
sp
ec
tiv

el
y.
“I
nf
”
im

pl
ie
s
th
at

th
e
so
lv
er

fa
ile
d
to

pr
ov
id
e
a
bo
un
d
w
ith

in
th
e
pr
es
cr
ib
ed

tim
e
lim

it.
G
ap

va
lu
es

sh
ow

n
w
ith

in
pa
re
nt
he
si
s
ar
e
ev
al
ua
te
d
us
in
g
gl
ob

al
op

tim
um

va
lu
es

in
st
ea
d
of

th
e
be
st
-f
ou
nd

up
pe
r
bo
un
d
by

A
M
P.
Fo

r
ea
ch

in
st
an
ce
,t
he

bo
ld

fa
ce

fo
nt

re
pr
es
en
ts
be
st
ru
n
tim

e
or

th
e
be
st
op
tim

al
ity

ga
p
(i
f
th
e
so
lv
e
tim

es
ou
t)

123



Journal of Global Optimization

4.3.2 Tuned1 parameter

In Table 4, we show the results of AMP (with OBBT) when � is tuned for each problem
instance and these results are compared with BARON. For the purposes of this article, � is
tuned by running AMP with � = {4, 8, 10, 16, 32} on each instance. We then choose the
value of� that provides the best lower bound (global optimal in many cases) in the minimum
amount of computation time. This tuned value of � is denoted by �∗ in Table 4. Developing
adaptive and automatic tuning heuristic-algorithms for computing the value of � remains an
open question and is a subject of future work. As the performance of AMP is consistently the
strongest with Gurobi, we present those results. Overall, this table shows the best results for
AMP. Column two of this table shows the run times of BARON. Similar to Table 3, the time
limit for BARON is the sum of 3600s and the maximum of the run times of the BT and PBT
algorithms (no time limit on BT and PBT). Column three tabulates the performance of BT-
AMPwith Gurobi by choosing the best� parameter for each instance. Overall, BT-AMP and
PBT-AMP performed better than BARON on 26 out of 32 instances. As discussed in detail
in Sect. 4.3.1, similar observations about the performance of our algorithms also hold for this
table. Again, the performance of PBT, despite the use of discrete optimization, indicates that
PBT is the strongest bound-tightening procedure. On the large MINLP instance meyer15,
PBT has large computational overhead, but this overhead pays off when AMP converges to
the global optimum in 538.56 s. As noted in the earlier remark, this was an open instance
prior to this work.

Table 3 is summarized with the cumulative distribution plot shown in Fig. 10. Figure
10a indicates that AMP, BT-AMP and PBT-AMP with Gurobi are better than BARON in
finding the best lower bounds. Though the proportion of instances for which global optima
are attained is not significantly different than BARON, the proportion of instances for which
better lower bounds are found using AMP-based algorithms is larger. Also, the advantages
of BT and PBT-based bound-tightening in AMP is evident from the fact that the proportion
of instances that find global optimum is higher. As expected, Figure 10b suggests that AMP
with Gurobi is overall faster than BARON on the easiest instances, but on harder instances
this speed is tempered by a degradation in solution quality.

4.4 Sensitivity of MINLP structure

In Fig. 11, we classify the MINLP instances to understand how problem structure influences
the success of AMP. There are various possible classification measures and we use the total
number of variables that are part of multilinear terms. This is because our algorithm heavily
depends on multi-variate partitioning on the nonlinear terms. Thus, it is likely that a measure
like this influences the performance of AMP. Consider the following simple example that
describes themeasure clearly: Let xi , ∀i = 1, . . . , n be the variables in a problemwith a linear

objective and one nonlinear constraint,
(∏k

i=1 xi + ∏k+1
i=2 xi

)
� M , such that 2 � k � n−1.

Then, the number of variables in mutlilinear terms is k + 1.
It is clear from the figure that both AMP andBT-AMP performs verywell on instances that

have large numbers of variables (�25) in the multilinear terms. We also observe that while
executing OBBT incurs a computational overhead (ratio up to≈16), there are many instances
below the unit ratio value (blue dashed line). Overall, these plots support the observation
that increasing the number of variables in multilinear terms are indicator of success when
executing AMP.

123



Journal of Global Optimization

GOpt 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12
.8

25
.6

51
.2

10
2.4

20
4.8

40
9.6 In

f
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BARON
AMP-grb
BT-AMP-grb
PBT-AMP-grb

p

Best gap (%)
(a) Comparison on Best Gap %

1 10 20 30 40 50 60 70 80 90
10

0+
0.0

0.2

0.4

0.6

0.8

1.0

BARON
AMP-grb
BT-AMP-grb
PBT-AMP-grb

Time factor

p

(b) Comparison on Best CPU Times

Fig. 10 Performance profiles of AMP (with OBBT and tuned �) and BARON. In a the x axis plots the
optimality gap of the algorithms and the y axis plots fraction of instances. Plot a tracks the number of instances
where an algorithm is able achieve the specified optimality gap. In b the x axis denotes the run time ratio of an
algorithm with the best run time of any algorithm. The y axis denotes the fraction of instances. Plot b tracks
the number of times an algorithm’s run time is within a specified factor of the best run time of any algorithm.
In both figures, higher is better. Overall, AMP-based algorithms perform better than BARON on p proportion
of instances within a factor of the best gap and with the best run times

4.5 OBBT results formeyer15

One of the primary observationsmade in this paper is the importance ofMIP-based sequential
OBBT on medium-scale MINLPs. However, for a given large-scale MINLP, one of the
drawbacks of BT and PBT is that it solves MILPs to tighten the variable bounds. Solving
MILPs can be time consuming, in particular on instances like meyer15.6 Here, we focus on
the run time issues associated with solving MILPs, suggest approaches for managing that
run time and still get much of their benefits in bound-tightening.

6 meyer15 is a generalized pooling problem instance. These problems are typically considered hard (bilinear)
MINLP for global optimization [9,36].

123



Journal of Global Optimization

50 100 150 200 250 300

0

2

4

6

8

10

12

Number of variables in multi-linear terms

T
A

M
P

T
nora

B

0

1

(a) AMP

0 50 100 150 200 250 300
0

5

10

15

20

T
T

B
−

P
M

A

T
nora

B

Number of variables in multi-linear terms

1

(b) BT-AMP

Fig. 11 Illustration of the ratio of run times of AMP and BT-AMP algorithms (with tuned parameters) to
BARON. The y axis denotes the ratio and the x axis denotes the total number of variables in mutlilinear terms
in a given MINLP instance. The blue dashed line indicates a ratio of 1. All red points correspond to a single
instance. A point below the blue line indicates a ratio in favor of AMP. (Color figure online)

Table 5 BT and PBT run times on meyer15 with and without a limit on the run time of every MILP solved
during the bound-tightening phase

BT PBT

� = 4 � = 8 � = 10 � = 16 � = 32

Without time limit 3877 19218 32130 29586 11705 17868

With time limit 3830 3914 4059 4014 3635 3621

Here, a 10-s time limit was used. The imposition of this limit reduces the total run time of PBT to close to BT

Table 6 AMP run times on meyer15 instance preceded by bound-tightening with (BT-lim, PBT-lim) and
without limit (BT, PBT) on run time per iteration

� = 4 � = 8 � = 10 � = 16 � = 32

Gap T Gap T Gap T Gap T Gap T

After BT 0.02 TO 0.08 TO 0.12 TO 0.31 TO 0.15 TO

After BT-lim 0.37 TO 0.14 TO 0.17 TO 0.69 TO 0.90 TO

After PBT GOpt 536.56 GOpt 1600 GOpt TO 0.20 TO 0.15 TO

After PBT-lim 0.37 TO 0.90 TO 0.19 TO 0.70 TO 0.90 TO

Values under “Gap” and “T ” are in % and seconds, respectively. Bold font represents the best result in each
row

Table 5 summarizes the run times of BT and PBT onmeyer15 for various values of �. As
shown in the first row of this table, the run time varies drastically when the MILP is solved to
optimality in every iteration of BT and PBT. To reduce this run time, we imposed a time limit
on every min- and max-MILP of 10s. Since early termination of MILP does not guarantee
optimal primal-feasible solutions, incumbent solutions are not valid for bound-tightening.
Instead, we use the best lower bound maintained by the solver. This ensures the validity of
the tightened bounds. As shown in the second row of Table 5, the run times of PBT are
drastically reduced.

Table 6 summarizes the results ofAMPbased on the tightened variable bounds presented in
Table 5. Interestingly, onmeyer15, we observed that AMP converges to near optimal solutions
(sometimes, even better than solving full MILPs) when the time limit on MILP solvers is

123



Journal of Global Optimization

Table 7 Overall structure of the MINLP problems. The first column describes the name of the problem
instance. The second column cites the source of the problem. The third column shows the optimal solution.
The fourth, fifth and sixth columns show the number of constraints, binary variables, and continuous variables,
respectively. The seventh column indicates the partitioned continuous variables. “ALL” refers to all variables
in mutlilinear terms and “VC” refers to variables in the minimum vertex cover as described in [8]. The final
column shows the number of mutlilinear terms

Instance References GOpt #Cons #BVars #CVars #CVars-P #ML

NLP1 [38] 7049.248 14 0 8 ALL 5

fuel [9] 8566.119 15 3 12 VC 3

ex1223a [9] 4.580 9 4 3 VC 3

ex1264 [9] 8.6 55 68 20 VC 16

ex1265 [9] 10.3 74 100 30 VC 25

ex1266 [9] 16.3 95 138 42 VC 36

eniplac [9] − 132117.083 189 24 117 VC 66

util [9] 999.578 167 28 117 ALL 5

meanvarx [9] 14.369 44 14 21 VC 28

blend029 [9] 13.359 213 36 66 VC 28

blend531 [9] 20.039 736 104 168 VC 146

blend146 [9] 45.297 624 87 135 VC 104

blend718 [9] 7.394 606 87 135 VC 100

blend480 [9] 9.227 884 124 188 VC 152

blend721 [9] 13.5268 627 87 135 VC 104

blend852 [9] 53.9626 2412 120 184 VC 152

wtsM2_05 [35] 229.7008 152 0 134 VC 48

wtsM2_06 [35] 173.4784 152 0 134 VC 48

wtsM2_07 [35] 80.77892 152 0 134 VC 48

wtsM2_08 [35] 109.4014 335 0 279 VC 84

wtsM2_09 [35] 124.4421 573 0 517 ALL 210

wtsM2_10 [35] 586.68 138 0 156 VC 60

wtsM2_11 [35] 2127.115 252 0 304 VC 112

wtsM2_12 [35] 1201.038 408 0 517 VC 220

wtsM2_13 [35] 1564.958 783 0 1040 VC 480

wtsM2_14 [35] 513.009 205 0 209 VC 90

wtsM2_15 [35] 2446.429 152 0 134 VC 48

wtsM2_16 [35] 1358.663 234 0 244 VC 126

lee1 [34] − 4640.0824 82 9 40 VC 24

lee2 [34] − 3849.2654 92 9 44 VC 36

meyer4 [34] 1086187.137 118 55 63 VC 48

meyer10 [34] 1086187.137 423 187 207 VC 300

meyer15 [34] 943734.0215 768 352 382 VC 675

imposed. This is an important feature for tuning the time spent tightening bounds versus
bound solution quality. Further, this intriguing result suggests further study of MIP-based
relaxations for OBBT of MINLPs, which we delegate for future work (Table 7).

123



Journal of Global Optimization

5 Conclusions

In this work, we developed an approach for adaptively partitioning nonconvex functions
in MINLPs. We show that an adaptive partitioning of the domains of variables outperforms
uniform partitioning, though the latter exhibits better optimality gaps in the first few iterations
of the lower-bounding algorithm. We also show that bound-tightening techniques can be
applied in conjunction with adaptive partitioning to improve convergence dramatically. We
then use combinations of these techniques to develop an algorithm for solving MINLPs to
global optimality. Our numerical experiments on MINLPs with polynomials suggests that
this is a very strong approach with an advantage of having very few tuning parameters in
contrast to the existing methods.

We have seen that using a well-designed MIP-based method with adaptive partitioning
schemes is an attractive way of tackling MINLPs. With an apriori fixed tolerance, we get
global optimum solutions by utilizing the well-developed state-of-the-art MIP solvers. How-
ever, though AMP is relatively faster than the available global solvers, we observed that
the computation times remain large for MINLPs with large number of nonconvex terms,
thus motivating a multitude of directions for further developments. First, it will be important
to consider existing classical nonlinear programming techniques, such as dual-based bound-
contraction, partition elimination within the branch-and-bound search tree, bound-tightening
at sub nodes [37], and constraint propagation methods [3], which can tremendously speed-up
our algorithm. Second, providing apriori guarantees on the size of the added partitions (�)
that leads to faster tightening of the relaxations. This will support automatic tuning of� from
withinAMP.Third, recent developments on generating tight convex hull-reformulation-based
cutting planes for solving convex generalized disjunctive programs will be very effective for
attaining faster convergence to global optimum [51]. Finally, extensions of our methods from
polynomial to general nonconvex functions (including fractional exponents, transcendental
functions and disjunctions of nonconvex functions) will be another direction that will have
relevance to numerous practical applications.

Acknowledgements The work was funded by the Center for Nonlinear Studies (CNLS) at LANL and the
LANL’s directed research and development project “POD: A Polyhedral Outer-approximation, Dynamic-
discretization optimization solver”. Work was carried out under the auspices of the U.S. DOE under Contract
No. DE-AC52-06NA25396.

A: Appendix

A.1: Sensitivity analysis of1

One of the important details of MINLP algorithms and approaches is their parameterization.
As seen in the earlier sections, AMP is no different. The quality of the solutions depend
heavily on the choice of �. However, in spite of this problem specific dependence, it is often
interesting to identify reasonable default values. Table 8 presents computational results on
all instances for different choices of �. From these results, AMP is most effective when �

is between 4 and 10.

123



Journal of Global Optimization

Table 8 This table shows a sensitivity analysis of AMP’s performance to the choice of �

Instances � ≤ 4 4 < � ≤ 10 � > 10

Gap(%) T Gap(%) T Gap(%) T

p1 GOpt 0.74 GOpt 0.24 GOpt 0.06

p2 GOpt 0.60 GOpt 0.20 GOpt 0.10

fuel GOpt 0.05 GOpt 0.06 GOpt 0.07

ex1223a GOpt 0.03 GOpt 0.02 GOpt 0.02

ex1264 GOpt 1.92 GOpt 0.79 GOpt 1.03

ex1265 GOpt 2.24 GOpt 0.28 GOpt 0.80

ex1266 GOpt 0.20 GOpt 0.23 GOpt 0.16

eniplac GOpt 2.39 GOpt 1.46 GOpt 0.75

util GOpt 2.52 GOpt 2.14 GOpt 0.55

meanvarx GOpt 967.70 GOpt 118.80 GOpt 70.09

blend029 GOpt 1.98 GOpt 1.33 GOpt 1.00

blend531 GOpt 88.60 GOpt 74.33 GOpt 49.76

blend146 23.34 TO 1.60 TO 3.20 TO

blend718 GOpt 1263.41 GOpt 581.68 GOpt 889.72

blend480 0.10 TO 0.02 TO 0.02 TO

blend721 GOpt 486.17 GOpt 44.13 GOpt 176.11

blend852 0.01 TO GOpt 144.26 GOpt 322.80

wtsM2_05 GOpt 2236.45 GOpt 2545.41 GOpt 386.95

wtsM2_06 0.02 TO GOpt 519.38 GOpt 972.20

wtsM2_07 0.77 TO 0.57 TO 0.54 TO

wtsM2_08 7.92 TO 9.28 TO 11.96 TO

wtsM2_09 7.47 TO 68.58 TO 68.58 TO

wtsM2_10 0.11 TO 0.11 TO 0.10 TO

wtsM2_11 6.10 TO 6.27 TO 10.41 TO

wtsM2_12 6.49 TO 8.69 TO 4.00 TO

wtsM2_13 7.37 TO 2.03 TO 10.27 TO

wtsM2_14 4.06 TO 5.59 TO 1.43 TO

wtsM2_15 0.17 TO 0.17 TO 0.57 TO

wtsM2_16 5.73 TO 8.17 TO 5.25 TO

lee1 GOpt 73.19 GOpt 13.61 0.03 TO

lee2 0.38 TO 0.02 TO 0.08 TO

meyer4 GOpt 64.82 GOpt 5.33 GOpt 20.74

meyer10 GOpt 684.63 GOpt 133.47 9.70 TO

meyer15 0.10 TO 0.33 TO 0.15 TO

Summary 7 14 14

Here, we bin results by � ≤ 4, � between 4 and 10, and � > 10. From these results, it is clear that most of
the good choices of � are between 4 and 10 and this is our recommended choice for this parameter. For each
instance, the bold face font represents best run time or the best optimality gap (if the solve times out)

A.2: Logarithmic and linear encodings of partition variables

InSect. 2, the discussiononpiecewise convex relaxations described formulations that encoded
the partition variables with a linear number of variables and a logarithmic number of variables

123



Journal of Global Optimization

Table 9 This table compares the logarithmic formulation of partition variables with the linear representation

Instances F(� = 4) F(� = 8) F(� = 10) F(� = 16) F(� = 32) Total

eniplac lin lin log log log 3

blend531 lin lin log lin lin 1

blend146 lin lin log lin lin 1

blend718 lin lin lin lin log 1

blend480 lin lin log lin lin 1

blend721 lin lin lin lin lin 0

blend852 log lin log lin log 3

wtsM2_05 lin lin lin lin lin 0

wtsM2_06 lin lin lin lin lin 0

wtsM2_07 lin lin lin lin lin 0

wtsM2_08 log lin log lin log 3

wtsM2_09 lin log log log log 4

wtsM2_10 lin lin lin lin lin 0

wtsM2_11 lin lin lin lin lin 0

wtsM2_12 lin lin lin lin lin 0

wtsM2_13 lin lin lin lin lin 0

wtsM2_14 lin lin lin lin lin 0

wtsM2_15 log lin lin log lin 2

wtsM2_16 lin lin lin lin lin 0

lee1 log log log log log 5

lee2 log lin lin lin lin 1

meyer4 log log lin lin log 3

meyer10 lin lin log log lin 2

meyer15 log log lin lin log 3

Total 7 4 9 5 8 33

Each column indicates the formulation with the fastest runtime for different choices of �. The last column
enumerates the number of times the logarithmic formulation is better

[52]. Table 9 compares the performance of AMP using both formulations. Despite fewer
variables in the logarithmic formulation, this encoding is only effective on a few problems,
generally on problems that require a significant number of partitions. These results suggest
that when the logarithmic encoding has nearly the same number of partition variables as the
linear encoding, the linear encoding is more effective.

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Progr. Comput. 1(1), 1–41 (2009)
2. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286

(1983)
3. Belotti, P.: Bound reduction using pairs of linear inequalities. J. Glob. Optim. 56(3), 787–819 (2013)
4. Belotti, P., Cafieri, S., Lee, J., Liberti, L.: On feasibility based bounds tightening (2012). https://hal.

archives-ouvertes.fr/file/index/docid/935464/filename/377.pdf
5. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for

non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

123

https://hal.archives-ouvertes.fr/file/index/docid/935464/filename/377.pdf
https://hal.archives-ouvertes.fr/file/index/docid/935464/filename/377.pdf


Journal of Global Optimization

6. Bent, R., Nagarajan, H., Sundar, K., Wang, S., Hijazi, H.: A polyhedral outer-approximation, dynamic-
discretization optimization solver, 1.x. Tech. rep., Los Alamos National Laboratory, Los Alamos, NM,
USA (2017). https://github.com/lanl-ansi/POD.jl

7. Bergamini, M.L., Grossmann, I., Scenna, N., Aguirre, P.: An improved piecewise outer-approximation
algorithm for the global optimization of MINLP models involving concave and bilinear terms. Comput.
Chem. Eng. 32(3), 477–493 (2008)

8. Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in mixed-integer nonlinear
programming, MINLP, and constrained derivative-free optimization, CDFO. Eur. J. Oper. Res. 252(3),
701–727 (2016)

9. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib–a collection of test models for mixed-integer
nonlinear programming. Inf. J. Comput. 15(1), 114–119 (2003)

10. Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms. J. Glob. Optim. 47(4), 661–685
(2010)

11. Castro, P.M.: Normalized multiparametric disaggregation: An efficient relaxation for mixed-integer bilin-
ear problems. J. Glob. Optim. 64(4), 765–784 (2016)

12. Castro, P.M.: Tightening piecewise McCormick relaxations for bilinear problems. Comput. Chem. Eng.
72, 300–311 (2015)

13. Coffrin, C., Hijazi, H.L., Van Hentenryck, P.: Strengthening convex relaxations with bound tightening for
power network optimization. In: Principles and Practice of Constraint Programming, pp. 39–57. Springer,
Berlin (2015)

14. Dunning, I., Huchette, J., Lubin, M.: JuMP: A modeling language for mathematical optimization. SIAM
Rev. 59(2), 295–320 (2017)

15. D’Ambrosio, C., Lodi, A., Martello, S.: Piecewise linear approximation of functions of two variables in
milp models. Oper. Res. Lett. 38(1), 39–46 (2010)

16. Faria, D.C., Bagajewicz, M.J.: Novel bound contraction procedure for global optimization of bilinear
MINLP problems with applications to water management problems. Comput. Chem. Eng. 35(3), 446–
455 (2011)

17. Faria, D.C., Bagajewicz, M.J.: A new approach for global optimization of a class of MINLP problems
with applications to water management and pooling problems. AIChE J. 58(8), 2320–2335 (2012)

18. Grossmann, I.E., Trespalacios, F.: Systematic modeling of discrete-continuous optimization models
through generalized disjunctive programming. AIChE J. 59(9), 3276–3295 (2013)

19. Hasan,M., Karimi, I.: Piecewise linear relaxation of bilinear programs using bivariate partitioning. AIChE
J. 56(7), 1880–1893 (2010)

20. Hijazi, H., Coffrin, C., Van Hentenryck, P.: Convex quadratic relaxations for mixed-integer nonlinear
programs in power systems. Math. Progr. Comput. 9(3), 321–367 (2017)

21. Hock, W., Schittkowski, K.: Test examples for nonlinear programming codes. J. Optim. Theory Appl.
30(1), 127–129 (1980)

22. Horst, R., Pardalos, P.M.: Handbook of global optimization, vol. 2. Springer, Berlin (2013)
23. Horst, R., Tuy, H.: Global optimization: deterministic approaches. Springer, Berlin (2013)
24. Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated water systems in

chemical processes. Comput. Chem. Eng. 30(4), 650–673 (2006)
25. Kocuk, B., Dey, S.S., Sun, X.A.: Strong SOCP relaxations for the optimal power flow problem. Oper.

Res. 64(6), 1177–1196 (2016)
26. Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A discretization-based approach for the

optimization of the multiperiod blend scheduling problem. Comput. Chem. Eng. 53, 122–142 (2013)
27. Li, H.L., Huang, Y.H., Fang, S.C.: A logarithmic method for reducing binary variables and inequality

constraints in solving task assignment problems. Inf. J. Comput. 25(4), 643–653 (2012)
28. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry

problem. Int. Trans. Oper. Res. 15(1), 1–17 (2008)
29. Lu, M., Nagarajan, H., Bent, R., Eksioglu, S., Mason, S.: Tight piecewise convex relaxations for global

optimization of optimal power flow. In: Power Systems Computation Conference (PSCC), pp. 1–7. IEEE
(2018)

30. Lu, M., Nagarajan, H., Yamangil, E., Bent, R., Backhaus, S., Barnes, A.: Optimal transmission line
switching under geomagnetic disturbances. IEEE Trans. Power Syst. 33(3), 2539–2550 (2018). https://
doi.org/10.1109/TPWRS.2017.2761178

31. Luedtke, J., Namazifar, M., Linderoth, J.: Some results on the strength of relaxations of multilinear
functions. Math. Progr. 136(2), 325–351 (2012)

32. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part i–convex
underestimating problems. Math. Progr. 10(1), 147–175 (1976)

123

https://github.com/lanl-ansi/POD.jl
https://doi.org/10.1109/TPWRS.2017.2761178
https://doi.org/10.1109/TPWRS.2017.2761178


Journal of Global Optimization

33. Meyer, C.A., Floudas, C.A.: Global optimization of a combinatorially complex generalized pooling prob-
lem. AIChE J. 52(3), 1027–1037 (2006)

34. Misener, R., Floudas, C.: Generalized pooling problem (2011). Available from Cyber-Infrastructure for
MINLP [www.minlp.org, a collaboration of Carnegie Mellon University and IBM Research] at: www.
minlp.org/library/problem/index.php?i=123

35. Misener, R., Floudas, C.A.: GloMIQO: Global mixed-integer quadratic optimizer. J. Glob. Optim. 57(1),
3–50 (2013)

36. Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: Global optimization of standard, generalized, and
extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35(5),
876–892 (2011)

37. Mouret, S., Grossmann, I.E., Pestiaux, P.: Tightening the linear relaxation of a mixed integer nonlinear
program using constraint programming. In: Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, pp. 208–222. Springer, Berlin (2009)

38. Nagarajan, H., Lu, M., Yamangil, E., Bent, R.: Tightening McCormick relaxations for nonlinear pro-
grams via dynamic multivariate partitioning. In: International Conference on Principles and Practice of
Constraint Programming, pp. 369–387. Springer, Berlin (2016)

39. Nagarajan, H., Pagilla, P., Darbha, S., Bent, R., Khargonekar, P.: Optimal configurations to minimize
disturbance propagation in manufacturing networks. In: American Control Conference (ACC), 2017, pp.
2213–2218. IEEE (2017)

40. Nagarajan, H., Sundar, K., Hijazi, H., Bent, R.: Convex hull formulations for mixed-integer multilinear
functions. In: Proceedings of the XIV International Global Optimization Workshop (LEGO 18) (2018)

41. Nagarajan, H., Yamangil, E., Bent, R., Van Hentenryck, P., Backhaus, S.: Optimal resilient transmission
grid design. In: Power Systems Computation Conference (PSCC), 2016, pp. 1–7. IEEE (2016)

42. Puranik, Y., Sahinidis, N.V.: Domain reduction techniques for global NLP and MINLP optimization.
Constraints 22(3), 338–376 (2017)

43. Rikun, A.D.: A convex envelope formula for multilinear functions. J. Glob. Optim. 10, 425–437 (1997).
https://doi.org/10.1023/A:1008217604285

44. Ruiz, J.P., Grossmann, I.E.: Global optimization of non-convex generalized disjunctive programs: a review
on reformulations and relaxation techniques. J. Glob. Optim. 67(1–2), 43–58 (2017)

45. Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex nlps and MINLPs with applications in
process design. Comput. Chem. Eng. 19(5), 551–566 (1995)

46. Ryoo, H.S., Sahinidis, N.V.: Analysis of bounds for multilinear functions. J. Glob. Optim. 19(4), 403–424
(2001)

47. Sahinidis, N.V.: Baron: A general purpose global optimization software package. J. Glob. Optim. 8(2),
201–205 (1996)

48. Speakman, E.E.: Volumetric Guidance for Handling Triple Products in Spatial Branch-and-Bound by.
Ph.D. thesis, University of Michigan (2017)

49. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math.
Program. 103(2), 225–249 (2005)

50. Teles, J.P., Castro, P.M., Matos, H.A.: Univariate parameterization for global optimization of mixed-
integer polynomial problems. Eur. J. Oper. Res. 229(3), 613–625 (2013)

51. Trespalacios, F., Grossmann, I.E.: Cutting plane algorithm for convex generalized disjunctive programs.
Inf. J. Comput. 28(2), 209–222 (2016)

52. Vielma, J.P., Nemhauser, G.L.: Modeling disjunctive constraints with a logarithmic number of binary
variables and constraints. Math. Progr. 128(1), 49–72 (2011)

53. Wicaksono, D.S., Karimi, I.: PiecewiseMILP under-and overestimators for global optimization of bilinear
programs. AIChE J. 54(4), 991–1008 (2008)

54. Wu, F., Nagarajan, H., Zlotnik, A., Sioshansi, R., Rudkevich, A.: Adaptive convex relaxations for gas
pipeline network optimization. In: American Control Conference (ACC), 2017, pp. 4710–4716. IEEE
(2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

www.minlp.org
www.minlp.org/library/problem/index.php?i=123
www.minlp.org/library/problem/index.php?i=123
https://doi.org/10.1023/A:1008217604285

	An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs
	Abstract
	1 Introduction
	2 Definitions
	3 Adaptive multivariate partitioning algorithm
	3.1 Presolve
	3.1.1 Partition initialization scheme and sequential OBBT

	3.2 Main algorithm
	3.2.1 Variable domain partitioning
	3.2.2 Computing lower and upper bounds


	4 Computational results
	4.1 Performance on a small-scale NLP
	4.1.1 AMP versus uniform partitioning on NLP1
	4.1.2 Performance of AMP on NLP1
	4.1.3 Benefits of MIP-based OBBT on NLP1

	4.2 Performance of AMP on large-scale MINLPs
	4.3 Performance of AMP with OBBT
	4.3.1 Default parameters of Δ
	4.3.2 Tuned Δ parameter

	4.4 Sensitivity of MINLP structure
	4.5 OBBT results for meyer15

	5 Conclusions
	Acknowledgements
	A: Appendix
	A.1: Sensitivity analysis of Δ
	A.2: Logarithmic and linear encodings of partition variables

	References




