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Abstract. In this work, we propose a two-stage approach to strengthen
piecewise McCormick relaxations for mixed-integer nonlinear programs
(MINLP) with multi-linear terms. In the first stage, we exploit Con-
straint Programing (CP) techniques to contract the variable bounds. In
the second stage we partition the variables domains using a dynamic mul-
tivariate partitioning scheme. Instead of equally partitioning the domains
of variables appearing in multi-linear terms, we construct sparser par-
titions yet tighter relaxations by iteratively partitioning the variable
domains in regions of interest. This approach decouples the number
of partitions from the size of the variable domains, leads to a signifi-
cant reduction in computation time, and limits the number of binary
variables that are introduced by the partitioning. We demonstrate the
performance of our algorithm on well-known benchmark problems from
MINLPLIB and discuss the computational benefits of CP-based bound
tightening procedures.

Keywords: McCormick relaxations · MINLP · Dynamic partitioning ·
Bound tightening

1 Introduction

Mixed Integer Nonlinear Programs (MINLPs) are part of a class of non-convex,
mathematical programs that include discrete variables and nonlinear terms in
the objective function and/or constraints. Within many application domains,
MINLPs with multi-linear, non-convex terms are of great interest. For example,
these problems appear in chemical engineering (synthesis of process/water net-
works) [18,20], energy infrastructure networks [8], and in the molecular distance
geometry problem [16]. Despite their importance in such areas, these problems
remain difficult to solve. Global optimization solvers, like BARON [21], depend
heavily on the quality of mixed-integer linear programing relaxations to MINLPs.
However, these relaxations are often weak and the solvers are not guaranteed to
c⃝ Springer International Publishing Switzerland 2016
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converge to a global optimum or even find a feasible solution. As a result, there
is considerable interest in developing tighter relaxations that improve the con-
vergence of global solvers. In this paper we focus on MINLPs with multi-linear
terms, though the approach is generalizable.

In the context of this paper, there are two key methods for deriving tight
relaxations of MINLPs with multi-linear terms. First, variable bounds are a
critical contributor to the quality of relaxations. As a result, bound tighten-
ing methods have received a great deal of attention, in particular for problems
with bilinear terms [1,5,6,9,19]. In most of these papers, the most common
approaches solve sequences of minimization and maximization problems where
the continuous variables are the objective. The solutions to these problems are
used to tighten the bounds of the variables. In this paper, we combine these
bound tightening approaches with constraint programming to improve their
effectiveness. The second method for tightening relaxations focuses on reduc-
ing the size of the relaxed feasible space. This is often done with domain par-
titioning, i.e. spatial branch-and-bound (sBB). In sBB, a single variable (often
the variable that violates the feasible region the most) is iteratively partitioned
within a branch-and-bound search tree [22,23]. One of the crucial requirements
of successful sBB is tight lower bounds on the objective. These bounds support
efficient pruning of infeasible regions and some of the most effective bounds are
those that are based on relaxations. When multi-linear terms are involved, a
commonly used method is McCormick relaxations. As McCormick relaxations
tend to be loose in many situations, the literature contains many efforts to
improve these relaxations. The method most closely related to our own builds
uniform piecewise McCormick relaxations via univariate or bivariate partition-
ing [6,11,14]. One of the drawbacks of such approaches is that they may need
a large number of partitions that are controlled by on/off binary variables. As
these binary variables introduce combinatorial inefficiencies, this approach is
often restricted to small problems. To address this issue, there has been recent
work focusing on addressing these inefficiencies. For example, [5,7] combines mul-
tiparametric disaggregation with optimality-based bound tightening methods.
In [25], the authors discuss a non-uniform, bivariate partitioning approach that
improves relaxations but provide results for a single, simple benchmark prob-
lem. More recently, in [11], the authors report the advantages of bivariate (as
compared to univariate) partitioning, however they use partitions chosen at uni-
formly located grid points. In the context of multi-linear terms, [24] discusses a
univariate parametrization method that solves medium-sized benchmarks. How-
ever, none of these approaches address the key limitation of uniform partitioning,
partition density, i.e. these methods introduce partitions in unproductive regions
of the search space. We address this limitation by introducing an approach that
dynamically partitions the relaxations in regions of the search space that favor
optimality. To the best of our knowledge, there is little or no work on methods
for solving MINLPs with multi-linear terms with such sparse partitioning.

To summarize, we address the problem of tight relaxations for non-convex
multi-linear functions and we develop a two-stage algorithm that strengthens
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piecewise multi-linear relaxations. In the first stage, we apply a sequential,
CP inspired, bound tightening approach. In the second stage, we develop a
dynamic, sparse multivariate partitioning approach that addresses the key limi-
tations of uniform partitioning approaches. With this algorithm, we are able to
solve many MINLPs more efficiently and accurately with fewer parameter tuning
options than the existing approaches. The remainder of this paper is organized
as follows: Sect. 2 discusses the required notation, problem set up and reviews
McCormick relaxations for bilinear and multi-linear terms. Section 3 discusses a
sequential bound tightening approach, formalizes the concepts and notation for
piecewise relaxations of McCormick envelopes, and provides a detailed discussion
on multivariate dynamic partitioning algorithm on multi-linear and monomial
terms. Section 4 illustrates the strength of the proposed algorithms on bench-
mark MINLPs and Sect. 5 concludes the paper.

2 Problem Definition

Notation: Here, we use lower and upper case for vector and matrix entries,
respectively. Bold font refers to the entire vector or matrix. With this nota-
tion, ||v||2 defines the L2 norm of vector v ∈ Rn. Given vectors v1 ∈ Rn

and v2 ∈ Rn, v1 · v2 =
∑n

i=1 v1iv2i; v1 + v2 implies element-wise sums; and
v1
α denotes the element-wise ratio between entries of v1 and the scalar α.
Next, z ∈ Z+ represents a strictly positive integer scalar. M ∈ Sn×n repre-
sents a symmetric square matrix M. Given variables xi and xj , ⟨xi, xj⟩MC ,
⟨xi, xj⟩UTMC and ⟨xi, xj⟩DTMC denote the McCormick envelope, uniformly-
partitioned McCormick envelope and dynamically-partitioned McCormick enve-
lope, respectively. (xL

i , x
U
i ) denotes the prescribed global lower and upper bound

and (xl
i, x

u
i ) denotes the tightened lower and upper bound, respectively.

Problem: The problems considered in this paper are MINLPs, where the non-
linearity is due to multi-linear (polynomial) functions. Often, these problems are
not convex. The general form of the problem, denoted as P0, is as follows:

P0 : minimize
x,y

f(x,y, z)

subject to g(x,y, z) ≤ 0,

h(x,y, z) = 0,
zK = xixj . . . xk, ∀K ∈ ML

xL ≤ x ≤ xU ,

y ∈ {0, 1}m

where, f : Rn → R is a scalar multi-linear function and g : Rn → Rm1 , h :
Rn → Rm2 are vector, multi-linear functions. x,y and z are vectors of con-
tinuous variables with box constraints, binary variables, and multi-linear func-
tions, respectively. zK is the Kth multilinear term in the set ML such that
ML = {K = (i, j, . . . , k)|zK = xixj . . . xk}. When i = j = . . . = k, the multi-
linearity is reduced to monomial terms.
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2.1 Standard Convex Relaxations for Multi-linear Terms

McCormick relaxations: Given two variables, xi,xj ∈ R such that xl
i ≤ xi ≤

xu
i and xl

j ≤ xj ≤ xu
j , we define the McCormick relaxation [17] of the bilinear

product xixj as x̂ij ∈ ⟨xi, xj⟩MC such that x̂ij satisfies

x̂ij ≥ xl
ixj + xl

jxi − xl
ix

l
j (1a)

x̂ij ≥ xu
i xj + xu

j xi − xu
i x

u
j (1b)

x̂ij ≤ xl
ixj + xu

j xi − xl
ix

u
j (1c)

x̂ij ≤ xu
i xj + xl

jxi − xu
i x

l
j (1d)

The relaxations in (1) are exact when one of the variables involved in the product
is a binary variable. Further, relaxations in (1) can be reduced to a simpler form
(three constraints) when both the variables involved in the product are binary
variables. If yi and yj are binary variables, we denote this simplified relaxation
as ŷij ∈ ⟨yi, yj⟩BMC .

Successive McCormick relaxations of multi-linear terms: Given a multi-
linear term xixj . . . xk with k-linear terms, we use a general technique for succes-
sively deriving McCormick envelopes on bilinear combinations of the terms. As
discussed in [4], the tightness of McCormick relaxations depends on the grouping
order of bilinear terms. Here, we assume a lexicographic order of grouping the
bilinear terms. For example, given a multi-linear term (x1x2x3x4), the successive
ordering of bilinear terms is (((x1x2)x3)x4). More formally, for k-linear terms,
the McCormick envelope of xixj . . . xk−1xk is represented as

⟨xixj . . . xk−1xk⟩MC = ⟨⟨⟨xixj⟩MC . . . xk−1⟩MCxk⟩MC .

Study of alternate grouping choices is beyond the scope of this paper and is a
topic of future work.

3 CP-DTMC Algorithm

The Constraint Programming with Dynamic Tightening of McCormicks (CP-
DTMC) algorithm is described in this section. It combines CP based domain
tightening with a partitioning scheme for McCormick relaxations.

3.1 Sequential Bound Tightening Procedure

The first stage of CP-DTMC tightens the bounds of the continuous variables
of P0. In many engineering applications there is little or no information about
the upper and lower bounds (xL,xU ) of these variables. Even when known, the
gap between the bounds is often large. As discussed earlier, these bounds are
used in McCormick relaxations to derive convex envelopes of multi-linear terms
in P0. Large bounds generally weaken these relaxations, degrade the quality
of the lower bounds, and slow the convergence of branch-and-cut algorithms.
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In practice, replacing the original bounds with tighter bounds can (sometimes)
dramatically improve the quality of these relaxations (see Fig. 1[a]).

The basic idea of bound tightening is to derive (new) valid bounds to improve
the relaxations. Our approach is based on the work [6] and is related to the
iterative bound tightening of [8]. Let xi, i = 1, . . . , n be the element-wise entries
of a continuous variable vector x ∈ Rn. In order to shrink the bounds of xi,
we solve a modified version of P0. For each xi, we first solve P0 where we
minimize xi and then solve P0 where we maximize xi. In both cases we add a
constraint that bounds the original objective function of P0 with a best known
feasible solution (x∗

loc,y
∗
loc, z

∗
loc). This is a key difference between our approach

and [6,8]. We also iteratively tighten the domain (bounds) of the variables using
the approach above. While there are other CP propagation methods that could
be used to further improve the quality of the bounds, this method was sufficient
to demonstrate the effectiveness of the overall approach.

More formally, Algorithm1 describes the first stage of CP-DTMC. Line 1
takes as input the current bounds and a feasible solution. The core of the algo-
rithm is embedded in Line 4. This is where we solve the variations of P0. Line
4a states the minimization and maximization of xi. Line 4b adds a bound on
the original objective function. Lines 4c–4f state the rest of P0. Based on these
solutions, we update the bounds of our variables (line 5). The procedure contin-
ues until the bounds do not change (line 2). Algorithm1 is naturally parallel as
each MILP of line 4 is independently solvable.

Algorithm 1. Sequential bound tightening on x vector
1: Input: xl ← xL,xu ← xU ,xl

iter = xu
iter ← 0, x∗

loc,y
∗
loc, z

∗
loc, TOL > 0.

2: while ||xl − xl
iter||2 > TOL and ||xu − xu

iter||2 > TOL do
3: xl

iter ← xl, xu
iter ← xu

4: Solve:

x∗l
i := min

x,y
xi; x∗u

i := max
x,y

xi ∀i = 1, . . . , n (a)

subject to f(x,y, z) ≤ f(x∗
loc,y

∗
loc, z

∗
loc), (b)

g(x,y, z) ≤ 0, (c)

h(x,y, z) = 0, (d)

zK = ⟨xixj . . . xk⟩MC , ∀K ∈ ML (d)

xl
iter ≤ x ≤ xu

iter, (e)

y ∈ {0, 1}m (f)

5: xl ← x∗l, xu ← x∗u

6: end while
7: return xl,xu (tightened bounds).
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3.2 Algorithm for Global Optimization of MINLPs

The second stage of CP-DTMC derives piecewise McCormick relaxations of
multi-linear terms based on multivariate dynamic partitioning. In practice, par-
titioning the bounds of the variables of the McCormick tightens the overall
relaxation. As the number of partitions goes to ∞, partitioning exactly approx-
imates the original multi-linear terms. However, introducing a large number of
partitions generally renders the problem intractable because the choice of par-
tition is controlled by binary on/off variables. Thus, typical approaches assume
a (small) finite number of partitions that uniformly discretize the multi-linear
variables [2,6,10,11]. While this is a straight-forward method for partitioning
the domain of variables, it potentially creates partitions that correspond to solu-
tions that are far away from the optimality region of the search space. In other
words, many of the partitions are not useful. Instead, we develop an approach
that successively tightens the McCormick relaxations with sparse domain dis-
cretization. This approach focuses partitioning on areas of the variable domain
that appear to influence optimality the most.

Lower bounds using piecewise McCormick relaxations: Without loss of
generality and for ease of explanation, we restrict the discussion of the lower
bounding procedure to bilinear terms1. Given a bilinear term xixj , we partition
the domains of xi and xj into Mi ∈ Z+ and Mj ∈ Z+ disjoint regions with
new binary variables ŷi ∈ {0, 1}Mi and ŷj ∈ {0, 1}Mj added to the formula-
tion. The binary variables are used to control the partitions that are active and
the tighter relaxation associated with the active partition. Formally, the piece-
wise McCormick constraints for a bilinear term, denoted by x̂ij ∈ ⟨xi, xj⟩UTMC

(uniform partitioning) or x̂ij ∈ ⟨xi, xj⟩DTMC (dynamic partitioning), take the
following form:

x̂ij ≥ (xl
i · ŷi)xj + (xl

j · ŷj)xi − (xl
i · ŷi)(xl

j · ŷj) (2a)

x̂ij ≥ (xu
i · ŷi)xj + (xu

j · ŷj)xi − (xu
i · ŷi)(xu

j · ŷj) (2b)

x̂ij ≤ (xl
i · ŷi)xj + (xu

j · ŷj)xi − (xl
i · ŷi)(xu

j · ŷj) (2c)

x̂ij ≤ (xu
i · ŷi)xj + (xl

j · ŷj)xi − (xu
i · ŷi)(xl

j · ŷj) (2d)
Mi∑

k=1

ŷik = 1,
Mj∑

k=1

ŷjk = 1 (2e)

ŷi ∈ {0, 1}Mi , ŷj ∈ {0, 1}Mj (2f)

where, (xl
i,xu

i ) ∈ RMi are the lower and upper bound vectors of variable xi

for each partition. In other words, for the kth partition of xi, the following
constraint defines the partition: xi

l
k ≤ xi ≤ xi

u
k . Note that the bilinear terms

in ŷjxi and ŷixj are exactly linearized using standard McCormick relaxations.
Also, (xl

i ·ŷi)(xl
j ·ŷj) is rewritten as xl

i(ŷiŷT
j )xl

j , where Ŷ = (ŷiŷT
j ) is anMi×Mj

1 This approach is easily extended to multi-linear terms using successive bilinear relax-
ations as discussed in Sect. 2.1.
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(a) Bilinear term (xixj)

x

x̃i

xL
i

xU
i

xl
i,iter

xu
i,iter

ỹi1
ỹi2

ỹi3

x̃i = x2
i

ỹi3

Piecewise
envelop

Outer
approximation

(b) Monomial term (x2
i )

Fig. 1. Feasible regions for bilinear and monomial (quadratic) terms based on DTMC.

matrix with binary product entries. As discussed in Sect. 2.1, any binary product
entry, yiyj , of Ŷ is exactly represented as ⟨yi, yj⟩BMC .

CP-DTMC algorithm for multi-linear terms.Given this model of piecewise
McCormick relaxations, we can now formalize dynamically tightening of these
relaxations. The pseudo-code of the DTMC algorithm is outlined in Algorithm 2.
The full CP-DTMC algorithm combines Algorithm 1 with Algorithm 2 and is
described in Algorithm 3. We first discuss the dynamic partitioning scheme as
outlined in Algorithm2 followed by the discussion of Algorithm3.

We first define P ∗
iter as a vector of active partitions whose dimension is equal

to |x|. For any variable xi, an active partition contains a lower bound and an
upper bound for xi The choice of the active partition of xi is the binary variable
of vector ŷi whose component is equal to 1.0. As shown in line 3 of Algorithm 2,
the size of the partition is dependent on the size of the active partition of the
current solution x∗

iter. The parameter, ∆, is used to scale the partition’s size and
it influences the convergence speed and the number of partitions. Lines 4–10
ensure that the partition’s size is greater than a prescribed tolerance and that
the partition lies within the contracted bounds.

In Algorithm3, lines 1–3 execute Algorithm1 to tighten the bounds using the
feasible solution (x∗

loc,y
∗
loc, z

∗
loc). Interestingly, on some MINLPs, this process

shrank the gap between the upper and lower bounds on some variables to 0.
Line 5 initializes the tightened bound domains as the active partitions as illus-
trated in “iteration-0” of Fig. 2. Lines 6–12 iteratively add dynamic partitions
around the current solution x∗

iter. Iterations 1 and 2 of Fig. 2 clearly illustrate
the partitioning scheme employed in this algorithm. The iterations stop (line 6)
when (a) the normalized improvement of the lower bound is less than TOLimp,
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xl
i xu

ix∗
i,loc

ỹi1 ỹi2 ỹi3

xl
i,loc = x∗

i,loc − xu−xl

∆
xu
i,loc = x∗

i,loc +
xu−xl

∆

xl
i xu

ix∗
i,i1

ỹi1 ỹi2 ỹi3

xl
i,i1 = x∗

i,i1 −
xu
i −xu

i,loc

∆ xu
i,i1 = x∗

i,i1 +
xu
i −xu

i,loc

∆

ỹi4 ỹi5

xl
i xu

i
x∗
i,i2

ỹi1 ỹi2 ỹi3

xl
i,i2 = x∗

i,i2 −
xu
i,i1−xl

i,i1
∆

ỹi4 ỹi5

*

*

ỹi7ỹi6

xl
i,i2 = x∗

i,i2 +
xu
i,i1−xl

i,i1
∆

*

Active domain chosen for partitioning (ỹi = 1)

New partition added in active domain

Inactive partitions (ỹi = 0)

Iteration-0 Iteration-1

Iteration-2

Fig. 2. Dynamic partitioning of variable xi as described in Algorithm 2

(b) x∗
iter remains in the same partitions and the size of the partitions is ≤ ϵ, or

(c) the computation hits a time limit. In Fig. 2, the third iteration terminates if
the x∗

i,i3 remains in partition [xl
i,i2, x

u
i,i2] and its size is less than ϵi. Figure 1(a)

is a geometric example of a DTMC iteration applied to a bilinear term. This
figure illustrates how the area enclosed by the convex relaxations decreases as
partitions are applied.

Algorithm 2. Dynamic partitioning of variable domains
Notation: Let P ∗

iter represent a vector of active partitions for variable vector x. xl(P ∗
iter) and

xu(P ∗
iter) represent the vectors of lower and upper bounds of the active partitions of x respectively.

1: Input: xl,xu,x∗
iter, P

∗
iter, ϵ > 0, P ∗

new = ∅, ∆ > 0
2: lb ← xl(P ∗

iter), ub ← xu(P ∗
iter)

3: Evaluate the size of new partition

liter =
ub − lb

∆

4: if liter > ϵ then
5: vl ← max(xl, (xiter − liter)),v

u ← min(xu, (xiter + liter))
6: P ∗

new ← {(vl
i, v

u
i ), ∀i = 1, . . . , n}

7: return P ∗
new

8: else
9: return ∅
10: end if

CP-DTMC Generalization. It is important to note that this approach can
be applied to other types of relaxations. For example, consider monomials whose
powers contain positive integer exponents (≥ 2). Without loss of generality2, we
assume the monomial takes the form x2

i . We once again partition the domain
of xi into Ni ∈ Z+ disjoint regions. Let ỹi ∈ {0, 1}Ni be the binary variables
added to the formulation. Formally, this piecewise convex relaxation, denoted
by x̃i ∈ ⟨xi⟩DTMC−q, takes the form:
2 In the case of higher order monomials, i.e., x5

i , we apply a reduction of the form
x2
ix

2
ixi ⇒ x̃i

2xi ⇒ ˜̃xixi.
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Algorithm 3. An algorithm for global optimization of MINLPs (CP-DTMC)
1: Input: MINLP, TOLimp > 0

2: Obtain local solution (x∗
loc,y

∗
loc, z

∗
loc) for the given MINLP

3: Execute Algorithm 1 (x∗
loc,y

∗
loc, z

∗
loc) to calculate bounds (xl,xu) on variables x ∈ Rn appearing in

multi-linear terms.

4: x∗
iter ← x∗

loc,y
∗
iter ← y∗

loc

5: P ∗
iter ← {(xl

i, x
u
i ), ∀i = 1, . . . , n} (Initialize the active partitions with the entire domains of variables)

6: while Stopping criterion not satisfied do

7: For the current x∗
iter and P ∗

iter , obtain P ∗
new from Algorithm 2.

8: P ∗
iter ← (P ∗

iter ∪ P ∗
new) (updated partitions for DTMC in line 9)

9: Solve
P iter : minimize

x,y
f(x,y, z)

subject to g(x,y, z) ≤ 0,

h(x,y, z) = 0,

zK = ⟨xixj . . . xk⟩DTMC , ∀K ∈ ML

xl ≤ x ≤ xu,

y ∈ {0, 1}m

10: Let (x∗
iter,y

∗
iter) be the solution to P iter

11: Update the vector of active partition sets P ∗
iter such that the binary variable ŷ∗

i on xi is equal to

1.0.

12: end while

13: Output: Global optimum solution (x∗
opt,y

∗
opt) or a lower bound (if solver times out) to the MINLP.

x̃i ≥ x2
i , (3a)

x̃i ≤
(
(xl

i · ỹi) + (xu
i · ỹi)

)
xi − (xl

i · ỹi)(xu
i · ỹi) (3b)

Ni∑

k=1

ỹik = 1 (3c)

ỹi ∈ {0, 1}Ni (3d)

Note that (xl
i · ỹi)(xu

i · ỹi) can be rewritten as xl
i(ỹiỹT

i )xu
i , where Ỹ = (ỹiỹT

i ) is
an Ni × Ni symmetric matrix with binary product entries (squared binaries on
diagonal). Hence it is sufficient to linearize the entries of the upper triangular
matrix with exact representations as discussed in Sect. 2.1. This relaxation is
then directly introduced into Algorithm3. The only modification is to supple-
ment the convex envelops in P iter with these monomial terms.

Lemma 3.1. Given a finite number of partitions on xi, the piecewise convex
relaxation of ⟨xi⟩DTMC−q is strictly tighter than ⟨xi, xi⟩DTMC .

Proof. For a given, finite number of partitions, Ni, on variable xi, ⟨xi, xi⟩DTMC

reduces to the following three-inequalities representing the piecewise convex
relaxations:



378 H. Nagarajan et al.

x̃i ≥ 2(xl
i · ỹi)xi − (xl

i · ỹi)2 (4a)

x̃i ≥ 2(xu
i · ỹi)xi − (xu

i · ỹi)2 (4b)

x̃i ≤
(
(xl

i · ỹi) + (xu
i · ỹi)

)
xi − (xl

i · ỹi)(xu
i · ỹi) (4c)

Ni∑

k=1

ỹik = 1, ỹi ∈ {0, 1}Ni

Clearly, inequalities (4a) and (4b) are under estimators of x2
i at grid points

xl
i, i = 1, . . . , Ni and xu

Ni
respectively. The over estimator in (4c) is same

as the over estimator defining ⟨xi⟩DTMC−q. Further, the second-order conic
under estimator of ⟨xi⟩DTMC−q can be equivalently represented with infinitely
many linear inequalities. However, as discussed above, the under estimators in
⟨xi, xi⟩DTMC are finite (Ni+1), thus relaxing the second-order-cone. Therefore,
⟨xi⟩DTMC−q ⊂ ⟨xi, xi⟩DTMC . ⊓,

Because of Lemma 3.1, we use this relaxation rather than McCormick on
monomial terms. However, using this relaxation forced us to introduce a technical
subtlety into the algorithm implementation. While constraint x̃i ≥ x2

i in (3) is
a convex, second order cone (SOC), several moderately sized problems were
difficult to solve, even with modern, state-of-the-art solvers (CPLEX). Either
the solver convergence was very slow or they terminated with a numerical error.
To circumvent this issue, we implemented a cutting-plane approach for these
constraints. This approach relaxes the SOC constraint with a finite number of
valid cutting planes (first order derivatives), produces an outer envelop, and
produces a lower bound on the optimal solution. This lower bound is tightened
for every violated SOC constraint by adding the corresponding valid cutting
plane until a solution obtained is feasible, and hence optimal, for the original
SOC set. Figure 1(b) illustrates the outer-approximation procedure. Red colored
lines are the under estimators of x2

1 and the valid cutting planes added to the
formulation. In Algorithm3, this approach is used for the solve routine of line 9.
We expect the need for this technical detail to diminish as conic solvers improve.

TCP-DTMC - A hybrid approach. The main idea behind the TCP-
DTMC approach is to combine the sequential bound tightening procedure in
Algorithm1 with a three-partition piecewise McCormick relaxation on every
variable in multi-linear terms. Since we know x∗

loc from a local solver, we dis-
cretize the domain with atmost three partitions and satisfy the rules of parti-
tioning as described in Algorithm2. Therefore, in line 4(d) of Algorithm1, the
McCormick relaxations are replaced by

zK = ⟨xixj . . . xk⟩DTMC , ∀K ∈ ML.

with an additional constraint,

3∑

k=1

ỹik = 1 ∀i = 1, . . . , |x|.
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The primary intuition behind this bound tightening procedure is to obtain
tighter bounds around the local solution and possibly converge the bounds to
near-optimum solutions in the initial step.

4 Computational Results

All computations were performed using the high performance computing
resources at Los Alamos National Laboratory (using nodes for parallel computa-
tion) with Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz processors and 62GB
of memory. All MILPs were solved using CPLEX 12.6.2 with default options and
presolver switched on. All the outer-approximation cutting planes for quadratic
terms were implemented as a CPLEX lazy cut callback. BARON 15.2.0 (default
options) was the global solver used to benchmark the performances of CP-DTMC
and TCP-DTMC. Ipopt 3.12.4 and Bonmin 1.8.4 were used as the local NLP
and MINLP solvers, respectively. These solvers were used to produce the ini-
tial feasible solution for Algorithm1. Table 1 summarizes the values of all the
parameters used in CP-DTMC. The notation “TO” is used to indicate when the
algorithm timed out (time limit=3600 sec) and “GOpt” is used to indicate global
optimum, i.e. the lower bound is within 0.0001% of the known optimal solution.
In Table 5, Best∆ and BestN correspond to the best solution found within the
CPU limit for DTMC’s ∆ and UTMC’s number of partitions, respectively. Also,
in Table 5, we define the following:

%Gap =
f(x∗

opt,y
∗
opt, z

∗
opt) − f(x∗

iter,y
∗
iter, z

∗
iter)

f(x∗
iter,y

∗
iter, z

∗
iter)

× 100, %BC =
∥xU − xL∥2 − ∥xu − xl∥2

∥xu − xl∥2
× 100

In our numerical experiments we considered three NLPs and thirteen MINLPs
that ranged from small, contrived examples to large-scale MINLP benchmark
problems selected from MINLPLib 2 [3]. We chose problems whose nonlinearity
is expressed with multi-linear terms. The MINLPs chosen for analysis purposes
are not exhaustive and we will expand the test-bed in our future work. Table 2
summarizes the statistics of the test-bed including global optimum, number of
constraints, binary variables, continuous variables and multi-linear terms. Note
that “nlp2” contains two, fourth degree monomial terms and “eniplac” contains
bilinear, quadratic and cubic monomials. In the case of the “blend” instances,
we partition only a single variable per bilinear term as these were large scale
MINLPs3.

4.1 NLPs

We first consider a small set of simple NLPs, as described in Fig. 3(a) and
[6,15,24]. We compare the performance of our algorithms with BARON. These

3 In the “blend” instances, there were few binary variables that appeared in most of
the bilinear terms. These are the variables chosen for partitioning.
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Table 1. Parameters used in CP-DTMC

N (number of partitions in UTMC) 10, 20, 40

∆ (scaling parameter in DTMC/TCP) 2, 4, 8, 10, 16, 32

Wall time execution limit 3600.0 sec

ϵ (minimum partition length tolerance) 0.001

TOL (bound tightening tolerance) 0.01

TOLimp (% improvement tolerance in DTMC) 0.001 %

Table 2. Problem description

Instance GOpt #Constraints #BVars #CVars #ML

(#CVars-discretized)

nlp1 58.384 3 0 2(2) 3

nlp2 0 2 0 2(4) 4

nlp3 7049.248 14 0 8(8) 5

ex1223a 4.580 9 4 3(3) 3

ex1264 8.6 55 68 20(20) 16

ex1265 10.3 74 100 30(30) 25

ex1266 16.3 95 138 42(42) 36

fuel 8566.119 15 3 12(6) 3

meanvarx 14.369 44 14 21(7) 28

util 4.305 167 28 117(7) 5

eniplac -132117.083 189 24 117(24) 66

blend029 13.359 213 36 66(10) 28

blend531 20.039 736 104 168(28) 146

blend718 7.394 606 87 135(20) 100

blend480 9.227 884 124 188(28) 152

blend146 45.297 624 87 135(20) 104

problems are interesting to discuss in more detail. “nlp1”, taken from [6], involves
both bilinear and quadratic terms. “nlp2” appears in applications related to elec-
tromagnetic inverse scattering problems [13]. In this problem, quadrilinear terms
in the objective and large bounds on the variables makes it particularly chal-
lenging for existing McCormick-relaxation based algorithms. For computational
studies, we solve nlp2 in two dimensions (n = 2). As shown in Fig. 3, the objec-
tive function has multiple global minima at (1,

√
2) and a local minimum at

the origin. When solved with IPOPT we get a local solution, f∗
loc = 5, at (0, 0).

“nlp3”, taken from a standard test-suite [12], has five bilinear terms and large
bounds on all the variables. Since this is a challenging problem for the equally



Tightening McCormick Relaxations for Nonlinear Programs 381

minimize
x1,x2

6x2
1 + 4x2

2 − 2.5x1x2

subject to x1x2 ≥ 8,
1 ≤ x1, x2 ≤ 10

minimize
x1,...,xn

n∑

i=1

(x2
i − i)2

subject to − 500 ≤ xi ≤ 500, i = 1, . . . , n

minimize
x1,...,x8

x1 + x2 + x3

subject to 0.0025(x4 + x6) − 1 ≤ 0,
0.0025(−x4 + x5 + x7) − 1 ≤ 0,
0.01(−x5 + x8) − 1 ≤ 0,
100x1 − x1x6 + 833.33252x4 − 83333.333 ≤ 0,
x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0,
x3x5 − x3x8 − 2500x5 + 1250000 ≤ 0,
100 ≤ x1 ≤ 10000,
1000 ≤ x2, x3 ≤ 10000,
10 ≤ x4, x5, x6, x7, x8 ≤ 1000

nlp1 nlp2

nlp3

(a) Mathematical formulations (b) nlp2 with multiple global minima
and a local minimum

Fig. 3. NLPs considered in this paper

partitioned, piecewise McCormick relaxations, this problem has been studied in
detail in [5,6,24].

Computational Performance. Table 5 summarizes the performance of the
algorithms on the NLPs. On nlp1 and nlp2, the algorithms performed con-
sistently better than Baron. For nlp2, we observed that the quadratic convex
envelopes, in conjunction with outer-approximation, performed computationally
better than solving mixed-integer SOCs.

Table 3. Contracted bounds after applying sequential tightened-CP algorithm on nlp3.

Variable Original bounds TCP bounds #BVars added

L U l u DTMC CP-DTMC TCP-DTMC

(∆ = 4) (∆ = 10) (∆ = 10)

x1 100 10000 573.1 585.1 14 14 3+3

x2 1000 10000 1351.2 1368.5 14 14 3+3

x3 1000 10000 5102.1 5117.5 17 15 3+3

x4 10 1000 181.5 182.5 16 15 3+3

x5 10 1000 295.3 296.0 17 15 3+3

x6 10 1000 217.5 218.5 16 15 3+3

x7 10 1000 286.0 286.9 17 15 3+3

x8 10 1000 395.3 396.0 17 15 3+3

Total 128 118 48
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We performed a detailed study of nlp3 as this problem has received con-
siderable interest in the literature. Table 3 show the effectiveness of sequential
tightened-CP (TCP) techniques when applied to nlp3. The initial large global
bounds are tightened by a few orders of magnitude with the addition of three
binary variables per continuous variable in the bilinear terms. This shows the
value of combining the disjunctive polyhedral approximation around the initial
feasible solution (x∗

loc) with the bound tightening procedure. In Fig. 4 we also
observe that the additional variables do not increase the overall run time too
much. More importantly, the reduction in the variable domains is substantial
using TCP. Finally, the jump in the run time after the first iteration in Fig. 4(b)
is due to the reduction in the initial bounds using the CP/TCP algorithm.

Parameter tuning. Table 4 shows the performance of the algorithm on nlp3
for varying values of ∆. It is clear that the solution time and the number of
binary variables added in the DTMC algorithm depend on tuning this parameter.
However, we note that the % gap for all ∆ ≥ 4 using TCP-DTMC were close
to the optimal solution. For ∆ = 10, the global optimum is found in 60 seconds
with only 48 binary variables added to the formulation. Overall, for nlp3, it
is important to note that the TCP-DTMC algorithm outperforms most of the
state-of-the-art piecewise relaxation methods developed in the literature.

(a) Tightened bounds after each iter-
ation

(b) Elapsed time(sec) of bounds
tightening

Fig. 4. Performance of sequential CP and sequential tightened-CP on nlp3.

4.2 MINLPs

In this section we compare the algorithms on MINLP benchmark problems
described in Table 5.

Performance of DTMC without CP/TCP. From Table 5 it is apparent
that dynamically partitioning variable domains to tighten McCormick relax-
ations is efficient even without bound tightening (CP/TCP). DTMC outper-
formed the uniform partitioning approach (UTMC) in twelve out of thirteen
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Table 4. Performance of proposed algorithms on nlp3 for various ∆ values.

∆ DTMC CP-DTMC TCP-DTMC

#BVars T %Gap #BVars T %Gap #BVars T %Gap

2 137 92.91 141.14 116 1393.31 39.654 160 TO 5.148

4 128 TO 0.013 114 TO 0.032 48 44.44 0.00064

8 116 TO 0.065 117 TO 0.009 48 50.31 0.00014

10 118 TO 0.052 118 TO 0.004 48 59.50 GOpt

16 117 TO 0.092 119 TO 0.009 48 63.04 0.00027

32 118 TO 0.076 120 TO 0.03 48 90.09 0.00029

problems. Problems ex1266, meanvarx and blend718 show the biggest perfor-
mance gains (UTMC even times out on meanvarx). DTMC also outperforms
Baron on ten out of thirteen MINLPs, in particular on eniplac, blend531 and
blend718. Blend718 is noteworthy as Baron times out with a 27.5% optimality
gap but DTMC produces global optimum solution within 326.2 sec.

Performance of DTMC with CP/TCP. In Table 5, we observed a reduc-
tion in run times of the DTMC algorithm (TDTMC) due to CP/TCP bound
tightening (with few exceptions). The reductions are significant on the large-
scale blend480 and blend518 problems. Specifically, after TCP, DTMC performs
almost twice as fast as Baron on blend480. It is also noteworthy to compare
the performance of CP-DTMC and TCP-DTMC with Baron on these problems.
We observed that Baron timed out on blend718 and blend146 with 27.5% and
4.039% optimality gaps. However, for blend718, CP-DTMC and TCP-DTMC
produce global optimum solutions within 488 sec and 208 sec, respectively. On
blend146, CP-DTMC and TCP-DTMC timed out with smaller optimality gaps
(0.043% and 0.0570%) than Baron and UTMC. On blend531, Baron finds the
global optimum in 2349 sec, but CP-DTMC and TCP-DTMC find the global
optimum in 157 sec and 392 sec - at least fifteen times faster. However, on
blend480, while the performance of our algorithms was better than UTMC, it
was not better than Baron.

Performance of CP/TCP. Commonly in optimization adding extra binary
variables increases problem complexity. However, in Table 5, we observed that
the run times for TCP were faster on twelve out of sixteen (including NLPs)
instances. Blend480 was an exception, where TCP was almost five times slower
than CP. Blend480 is one of the harder MINLPs; it has a large number of binary
variables and constraints. From a total domain reduction (BC%) perspective,
the advantages of TCP are evident in Table 5. Nlp3, meanvarx and blend029
have the largest reduction. The small BC% values on “blend” problems are due
to variable bounds that are tight to begin with.

Performance of convex relaxations on monomials. Table 6 describes the
performance of the algorithms when McCormick relaxations (⟨x, x⟩DTMC) are
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Table 5. Comparison of all algorithms

Instance BARON UTMC DTMC

%Gap T BestN %Gap TUTMC Best∆ %Gap TDTMC

nlp1 GOpt 4.42 40 0.091 12.74 32 GOpt 1.71

nlp2 GOpt 4.19 20 GOpt 0.07 32 GOpt 0.07

nlp3 GOpt 13.26 40 0.585 TO 4 0.013 TO

ex1223a GOpt 4.26 20 GOpt 0.02 32 GOpt 0.01

ex1264 GOpt 13.84 10 GOpt 50.62 10 GOpt 1.97

ex1265 GOpt 7.93 10 GOpt 76.35 8 GOpt 0.57

ex1266 GOpt 17.43 10 GOpt 114.15 2 GOpt 0.74

fuel GOpt 4.38 40 GOpt 1.09 32 GOpt 0.40

meanvarx GOpt 4.31 40 0.221 TO 8 0.012 90.64

util GOpt 5.54 40 8.186 6.94 32 0.0098 8.21

eniplac GOpt 330.46 10 GOpt 2.47 32 GOpt 1.97

blend029 GOpt 15.33 10 GOpt 2.51 32 GOpt 1.95

blend531 GOpt 2348.08 20 0.045 153.43 8 GOpt 140.76

blend718 27.484 TO 20 GOpt 1198.42 16 GOpt 326.17

blend480 GOpt 2044.22 20 0.2 TO 16 0.125 2478.27

blend146 4.039 TO 20 0.58 TO 16 0.035 TO

Instance CP-DTMC TCP-DTMC

Best∆ BC(%) %Gap TCP TDTMC Best∆ BC(%) %Gap TTCP TDTMC

nlp1 16 96.67 GOpt 8.96 1.18 16 98.89 GOpt 2.73 1.10

nlp2 10 99.99 GOpt 8.73 0.02 32 99.99 GOpt 0.34 0.02

nlp3 10 52.86 0.004 9.06 TO 10 99.84 GOpt 59.00 0.50

ex1223a 10 99.00 GOpt 6.31 0.01 10 99.00 GOpt 0.11 0.01

ex1264 10 39.72 GOpt 10.96 1.48 16 40.56 GOpt 5.33 1.74

ex1265 4 23.74 GOpt 10.56 0.64 32 23.74 GOpt 3.20 0.72

ex1266 2 82.29 GOpt 15.15 0.02 4 82.29 GOpt 4.16 0.34

fuel 4 99.90 GOpt 6.95 0.08 4 99.90 GOpt 0.14 0.08

meanvarx 10 67.28 0.004 6.50 12.93 4 84.09 0.0066 8.26 395.23

util 10 99.99 GOpt 13.29 0.47 10 99.99 GOpt 4.73 0.83

eniplac 4 19.15 GOpt 16.71 49.83 32 19.15 GOpt 11.50 5.56

blend029 32 16.08 GOpt 15.73 1.63 10 36.34 GOpt 4.76 1.48

blend531 32 6.91 GOpt 93.91 63.77 4 9.48 GOpt 310.36 82.09

blend718 16 2.38 GOpt 52.07 435.90 32 2.94 GOpt 28.46 179.40

blend480 16 13.89 0.092 183.45 1962.90 16 18.47 0.097 1014.47 1029.00

blend146 32 0.16 0.043 63.71 TO 8 0.45 0.057 30.64 TO

applied to monomial terms. These results are compared with the tighter convex
relaxations (⟨x⟩DTMC−q) of Table 5. The run times of DTMC with tighter convex
relaxations are faster on all the instances (best on eniplac). Moreover, the total
reduction in bounds on variables during CP/TCP steps are up to 11% larger
using tighter convex relaxations.
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Table 6. Performance of algorithms with basic McCormick relaxations on higher-order
monomials.

Instances with DTMC CP-DTMC TCP-DTMC

monomials %Gap TDTMC BC(%) %Gap TCP TDTMC BC(%) %Gap TTCP TDTMC

nlp1 0.0002 0.86 96.67 0.0002 8.16 0.98 98.89 0.00013 1.64 0.37

nlp2 GOpt 13.50 99.99 GOpt 7.99 2.49 99.99 GOpt 0.31 3.74

ex1223a 0.0002 2.16 99.00 0.0001 5.84 0.31 99.00 0.0001 0.79 0.12

fuel GOpt 1.48 99.82 GOpt 6.45 0.20 99.90 GOpt 3.49 0.21

meanvarx 0.012 755.86 67.28 0.0097 6.43 382.66 74.08 0.0077 6.63 453.31

eniplac 0.0012 350.94 7.68 GOpt 20.31 2662.94 17.26 GOpt 29.98 68.21

5 Conclusions

In this work, we developed an approach for dynamically partitioning McCormick
relaxations of multi-linear terms in MINLPs. This is a class of well-known, hard,
non-convex optimization problems, where the lower bounds from these relax-
ations can be arbitrarily bad. We show that a dynamic partitioning of the
domains of variables outperforms uniform partitioning and leads to a signifi-
cantly smaller number of binary variables. We also show that CP techniques,
such as bound contraction, can be applied in conjunction with dynamic parti-
tioning to improve convergence drastically. Our numerical experiments suggest
that the initial bounds of many benchmark problems are unnecessarily loose,
lead to solver scalability issues, and result in poor relaxations.

Finally, we emphasize that the algorithm presented in this paper is by no
means exhaustive and there are a number of interesting directions for future
research. First, the concept of dynamic partitioning could be combined with
tighter convex over and under estimators for nonlinear functions and further
improve the quality of the relaxations. Second, we only applied the bound tight-
ening procedure at the root node. We could further apply it at sub nodes not
unlike how [19] applies McCormick tightening. Third, there are CP propagation
techniques that could be applied to further tighten variable domains. Finally,
we could also improve the overall quality of the McCormick relaxations by using
different orderings of variables in multi-linear terms.
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